Bhanu9Prakash
commited on
Commit
•
a970f52
1
Parent(s):
f4a7c13
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.94 +/- 0.27
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75dbc5582b0645a73876703c905a93e8b292cdc2f0d8e0c47dfa00f72b4c5f2c
|
3 |
+
size 108114
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f93ecb3c8b0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f93ecb27fc0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 453664,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1683883259735328926,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8y1Xv4c2XT8uwWE/bPS9P/Q+az8o260/IxXjvqDUe7+EMnC+fWeiP+qWU7/f8RC/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7g0wv+SkQT+2zqc/RIfcP9YWiT8kccE/7v0wvwaiU7/13Na+dBXHP1qXpr7+2sW+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADzLVe/hzZdPy7BYT9eEQo/tXbSPw3pJz5s9L0/9D5rPyjbrT9u0MO+EWu0P7Qlmr4jFeO+oNR7v4QycL40MTbAO+12P69TKMB9Z6I/6pZTv9/xEL/YQxu/NnPtvIEtSL+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[-0.8405449 0.8641133 0.88185394]\n [ 1.4840217 0.91892934 1.3582506 ]\n [-0.44352064 -0.98371315 -0.2345677 ]\n [ 1.2687832 -0.8265215 -0.56619066]]",
|
38 |
+
"desired_goal": "[[-0.68771255 0.7564223 1.3109958 ]\n [ 1.722878 1.0710094 1.5112653 ]\n [-0.69137466 -0.82669103 -0.41965452]\n [ 1.5553422 -0.32537347 -0.3864364 ]]",
|
39 |
+
"observation": "[[-0.8405449 0.8641133 0.88185394 0.5393275 1.6442477 0.16397496]\n [ 1.4840217 0.91892934 1.3582506 -0.38244957 1.4095174 -0.3010689 ]\n [-0.44352064 -0.98371315 -0.2345677 -2.8467531 0.96455735 -2.6301076 ]\n [ 1.2687832 -0.8265215 -0.56619066 -0.60650396 -0.0289856 -0.78194433]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuki+PWEeYzlol2s+hAtUPcGbL7uP2Ug+ufQYPigLwD1oURU+/zP8vKZLlL2rhoU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 9.2912152e-02 2.1659724e-04 2.3006976e-01]\n [ 5.1768795e-02 -2.6795717e-03 1.9614242e-01]\n [ 1.4937104e-01 9.3771279e-02 1.4581835e-01]\n [-3.0786512e-02 -7.2409913e-02 2.6079306e-01]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.54634,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIe4UF9wNe97+UhpRSlIwBbJRLMowBdJRHQJXkv7FbVz91fZQoaAZoCWgPQwiafLPNjWkCwJSGlFKUaBVLMmgWR0CV5Dme18b8dX2UKGgGaAloD0MIfH+D9uoj+r+UhpRSlGgVSzJoFkdAleOpm/WUbHV9lChoBmgJaA9DCLfvUX+9Avy/lIaUUpRoFUsyaBZHQJXjIsNDtw91fZQoaAZoCWgPQwjAsz16w/36v5SGlFKUaBVLMmgWR0CV5qvCdjG2dX2UKGgGaAloD0MIpONqZFe6AsCUhpRSlGgVSzJoFkdAleYlsYVIqnV9lChoBmgJaA9DCMRfkzXqYf2/lIaUUpRoFUsyaBZHQJXllT987ZF1fZQoaAZoCWgPQwhEpREz+7wBwJSGlFKUaBVLMmgWR0CV5Q6w+t8vdX2UKGgGaAloD0MIFQMkmkCxAsCUhpRSlGgVSzJoFkdAleihFZxJd3V9lChoBmgJaA9DCAb1LXO6DAPAlIaUUpRoFUsyaBZHQJXoGwRoRI11fZQoaAZoCWgPQwgz3lZ6bTYCwJSGlFKUaBVLMmgWR0CV54pRXOnmdX2UKGgGaAloD0MIiITv/Q06BcCUhpRSlGgVSzJoFkdAlecDiCJ40XV9lChoBmgJaA9DCC2yne+nxv2/lIaUUpRoFUsyaBZHQJXqlkoWpId1fZQoaAZoCWgPQwi78lmeBzcDwJSGlFKUaBVLMmgWR0CV6hAnUlRhdX2UKGgGaAloD0MIBkfJq3OsAsCUhpRSlGgVSzJoFkdAlemABtDUmXV9lChoBmgJaA9DCG7b96i/Hv6/lIaUUpRoFUsyaBZHQJXo+Sr5qM51fZQoaAZoCWgPQwj8AKQ2cbL2v5SGlFKUaBVLMmgWR0CV7IMwDeTFdX2UKGgGaAloD0MIUrezrzxI/7+UhpRSlGgVSzJoFkdAlev9LlFMI3V9lChoBmgJaA9DCLBXWHA/4P2/lIaUUpRoFUsyaBZHQJXrbIPsiSt1fZQoaAZoCWgPQwiQhlPm5tv7v5SGlFKUaBVLMmgWR0CV6uYmb9ZSdX2UKGgGaAloD0MIDDz3Hi55AMCUhpRSlGgVSzJoFkdAle5k3juKGnV9lChoBmgJaA9DCA7cgTrlEfm/lIaUUpRoFUsyaBZHQJXt3rHEMsp1fZQoaAZoCWgPQwiGAraDERsDwJSGlFKUaBVLMmgWR0CV7U4bS7XhdX2UKGgGaAloD0MICttPxviw/b+UhpRSlGgVSzJoFkdAlezHNHH3lHV9lChoBmgJaA9DCG9FYoIafvm/lIaUUpRoFUsyaBZHQJXwQ3FUADJ1fZQoaAZoCWgPQwhKsg5HV0kAwJSGlFKUaBVLMmgWR0CV771QqI8AdX2UKGgGaAloD0MI3rBtUWaD/b+UhpRSlGgVSzJoFkdAle8sZ9/jKnV9lChoBmgJaA9DCKwCtRg8TPu/lIaUUpRoFUsyaBZHQJXupbxEv011fZQoaAZoCWgPQwiBQ6hSs4f+v5SGlFKUaBVLMmgWR0CV8ijoIOYqdX2UKGgGaAloD0MIVkeOdAZGAcCUhpRSlGgVSzJoFkdAlfGi4e9zwXV9lChoBmgJaA9DCFH51/LKtQHAlIaUUpRoFUsyaBZHQJXxEeZG8VZ1fZQoaAZoCWgPQwiEnziAft/3v5SGlFKUaBVLMmgWR0CV8Is41gpjdX2UKGgGaAloD0MIdR4V/3fE/L+UhpRSlGgVSzJoFkdAlfQL3j+72HV9lChoBmgJaA9DCKVquwm+qf2/lIaUUpRoFUsyaBZHQJXzhcxCY1J1fZQoaAZoCWgPQwi858ByhKwDwJSGlFKUaBVLMmgWR0CV8vTx5LRKdX2UKGgGaAloD0MIU7KchNIX/L+UhpRSlGgVSzJoFkdAlfJuMl1KXnV9lChoBmgJaA9DCG1YU1kUlgfAlIaUUpRoFUsyaBZHQJX2Bw6ySmt1fZQoaAZoCWgPQwhLWvENhY//v5SGlFKUaBVLMmgWR0CV9YFMZgogdX2UKGgGaAloD0MIH6LRHcSO/b+UhpRSlGgVSzJoFkdAlfTwkgOjI3V9lChoBmgJaA9DCMy3Pqw3avm/lIaUUpRoFUsyaBZHQJX0aiaiKzl1fZQoaAZoCWgPQwj59xkXDsT9v5SGlFKUaBVLMmgWR0CV+AEmplz2dX2UKGgGaAloD0MIBORLqOBw9r+UhpRSlGgVSzJoFkdAlfd65Gz8g3V9lChoBmgJaA9DCGKDhZM0//2/lIaUUpRoFUsyaBZHQJX26lpGnXN1fZQoaAZoCWgPQwjpt68D56wBwJSGlFKUaBVLMmgWR0CV9mRYA80UdX2UKGgGaAloD0MIodl1b0ViAcCUhpRSlGgVSzJoFkdAlfnjsY2sJnV9lChoBmgJaA9DCLYQ5KCEmQPAlIaUUpRoFUsyaBZHQJX5XYRNATt1fZQoaAZoCWgPQwgoLPGAskkDwJSGlFKUaBVLMmgWR0CV+My6+WWydX2UKGgGaAloD0MIQgddwqG3/7+UhpRSlGgVSzJoFkdAlfhGCI1tO3V9lChoBmgJaA9DCH4bYrzm1fu/lIaUUpRoFUsyaBZHQJX74j5bhWJ1fZQoaAZoCWgPQwh5PgPqzej9v5SGlFKUaBVLMmgWR0CV+1wHqu8sdX2UKGgGaAloD0MITyDsFKtG+r+UhpRSlGgVSzJoFkdAlfrLIT4+KXV9lChoBmgJaA9DCAHbwYh9Qvu/lIaUUpRoFUsyaBZHQJX6RHSWqtJ1fZQoaAZoCWgPQwjjiSDOwwkAwJSGlFKUaBVLMmgWR0CV/cdxQzk7dX2UKGgGaAloD0MIjgbwFkiQAMCUhpRSlGgVSzJoFkdAlf1BkRSP2nV9lChoBmgJaA9DCDY7Un3nF/m/lIaUUpRoFUsyaBZHQJX8sJv5xip1fZQoaAZoCWgPQwid8X1xqYr+v5SGlFKUaBVLMmgWR0CV/CnlGPPtdX2UKGgGaAloD0MItYe9UMD2+b+UhpRSlGgVSzJoFkdAlf/M2BJ7LXV9lChoBmgJaA9DCNicg2dC0/m/lIaUUpRoFUsyaBZHQJX/SNHYpUh1fZQoaAZoCWgPQwi0rtFyoIf/v5SGlFKUaBVLMmgWR0CV/rmKZUkwdX2UKGgGaAloD0MI7N0f71Xr97+UhpRSlGgVSzJoFkdAlf4zkZJkG3V9lChoBmgJaA9DCFFsBU1L7Pm/lIaUUpRoFUsyaBZHQJYB1wOvt+l1fZQoaAZoCWgPQwibIVUUrzL9v5SGlFKUaBVLMmgWR0CWAVD+BH09dX2UKGgGaAloD0MI8N3mjZNC/r+UhpRSlGgVSzJoFkdAlgDAFPi1iXV9lChoBmgJaA9DCKZDp+fdWPi/lIaUUpRoFUsyaBZHQJYAOeRPoFF1fZQoaAZoCWgPQwhBmrFoOvv9v5SGlFKUaBVLMmgWR0CWA+EKVpsXdX2UKGgGaAloD0MIzox+NJzy/b+UhpRSlGgVSzJoFkdAlgNdBWxQi3V9lChoBmgJaA9DCO87hsd+Fv2/lIaUUpRoFUsyaBZHQJYCziaRZEF1fZQoaAZoCWgPQwjvHwvRIfD9v5SGlFKUaBVLMmgWR0CWAkiLVFx5dX2UKGgGaAloD0MIRGtFm+Pc/b+UhpRSlGgVSzJoFkdAlgXg8wHqvHV9lChoBmgJaA9DCB5Td2UXTPu/lIaUUpRoFUsyaBZHQJYFW0MPSUl1fZQoaAZoCWgPQwhl4lZBDHT8v5SGlFKUaBVLMmgWR0CWBMp3X7LudX2UKGgGaAloD0MIc0hqoWRy+b+UhpRSlGgVSzJoFkdAlgREb1h9cHV9lChoBmgJaA9DCGjO+pRjMvm/lIaUUpRoFUsyaBZHQJYHxf4REnd1fZQoaAZoCWgPQwhkAn6NJEEBwJSGlFKUaBVLMmgWR0CWBz/GVAzIdX2UKGgGaAloD0MICJChYweV/7+UhpRSlGgVSzJoFkdAlgavFNtZWHV9lChoBmgJaA9DCFggelIm9fm/lIaUUpRoFUsyaBZHQJYGKCdz4lB1fZQoaAZoCWgPQwjElbN3RlsAwJSGlFKUaBVLMmgWR0CWCbeenQ6ZdX2UKGgGaAloD0MIyhXe5SK+AcCUhpRSlGgVSzJoFkdAlgkyJXQtz3V9lChoBmgJaA9DCMcOKnEdI/m/lIaUUpRoFUsyaBZHQJYIoj9n9Nx1fZQoaAZoCWgPQwjZ6Qd1kcL6v5SGlFKUaBVLMmgWR0CWCBu14Pf9dX2UKGgGaAloD0MIaf8DrFU7BcCUhpRSlGgVSzJoFkdAlgu7O3UhFHV9lChoBmgJaA9DCJp4B3jSwvy/lIaUUpRoFUsyaBZHQJYLNOuaF251fZQoaAZoCWgPQwg8okJ1c9EAwJSGlFKUaBVLMmgWR0CWCqQtBfKIdX2UKGgGaAloD0MI/N8RFaobA8CUhpRSlGgVSzJoFkdAlgodXHR1HXV9lChoBmgJaA9DCHIycasgxv+/lIaUUpRoFUsyaBZHQJYOoqbz9TB1fZQoaAZoCWgPQwi6hhkaT0QAwJSGlFKUaBVLMmgWR0CWDh1jy4FzdX2UKGgGaAloD0MImx2pvvNL/7+UhpRSlGgVSzJoFkdAlg2ObVjI73V9lChoBmgJaA9DCBDK+zia4/y/lIaUUpRoFUsyaBZHQJYNCU4aP0Z1fZQoaAZoCWgPQwi9baZCPJL/v5SGlFKUaBVLMmgWR0CWEZ642CNCdX2UKGgGaAloD0MI1pC4x9JH/7+UhpRSlGgVSzJoFkdAlhEZ+tr9EXV9lChoBmgJaA9DCOVBeoocIgHAlIaUUpRoFUsyaBZHQJYQilXRw611fZQoaAZoCWgPQwh2UfTAxyD1v5SGlFKUaBVLMmgWR0CWEASpBHCodX2UKGgGaAloD0MI4IPXLm14+7+UhpRSlGgVSzJoFkdAlhS3IIWxhXV9lChoBmgJaA9DCF8mipC6Hf6/lIaUUpRoFUsyaBZHQJYUMngHeJp1fZQoaAZoCWgPQwhLP+Hs1lIDwJSGlFKUaBVLMmgWR0CWE6NCZ4OddX2UKGgGaAloD0MIHAjJAiawAMCUhpRSlGgVSzJoFkdAlhMeZPVNH3V9lChoBmgJaA9DCKPNcW4TLgHAlIaUUpRoFUsyaBZHQJYYEA3kxRF1fZQoaAZoCWgPQwjI0LGDSnwCwJSGlFKUaBVLMmgWR0CWF4w+t8u0dX2UKGgGaAloD0MIs7J9yFsu/r+UhpRSlGgVSzJoFkdAlhb9IoVmBnV9lChoBmgJaA9DCN7oYz4gEP2/lIaUUpRoFUsyaBZHQJYWeRuCPIZ1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 22683,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89c938535c57657659b74731d7fc6363728156d3fd35f9641406ae5744621b87
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56312a015fe68f47a760fdb076c2ac195f0fe5cee84de1273e7d6dedc91153bd
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f93ecb3c8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f93ecb27fc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 453664, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683883259735328926, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8y1Xv4c2XT8uwWE/bPS9P/Q+az8o260/IxXjvqDUe7+EMnC+fWeiP+qWU7/f8RC/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7g0wv+SkQT+2zqc/RIfcP9YWiT8kccE/7v0wvwaiU7/13Na+dBXHP1qXpr7+2sW+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADzLVe/hzZdPy7BYT9eEQo/tXbSPw3pJz5s9L0/9D5rPyjbrT9u0MO+EWu0P7Qlmr4jFeO+oNR7v4QycL40MTbAO+12P69TKMB9Z6I/6pZTv9/xEL/YQxu/NnPtvIEtSL+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.8405449 0.8641133 0.88185394]\n [ 1.4840217 0.91892934 1.3582506 ]\n [-0.44352064 -0.98371315 -0.2345677 ]\n [ 1.2687832 -0.8265215 -0.56619066]]", "desired_goal": "[[-0.68771255 0.7564223 1.3109958 ]\n [ 1.722878 1.0710094 1.5112653 ]\n [-0.69137466 -0.82669103 -0.41965452]\n [ 1.5553422 -0.32537347 -0.3864364 ]]", "observation": "[[-0.8405449 0.8641133 0.88185394 0.5393275 1.6442477 0.16397496]\n [ 1.4840217 0.91892934 1.3582506 -0.38244957 1.4095174 -0.3010689 ]\n [-0.44352064 -0.98371315 -0.2345677 -2.8467531 0.96455735 -2.6301076 ]\n [ 1.2687832 -0.8265215 -0.56619066 -0.60650396 -0.0289856 -0.78194433]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuki+PWEeYzlol2s+hAtUPcGbL7uP2Ug+ufQYPigLwD1oURU+/zP8vKZLlL2rhoU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 9.2912152e-02 2.1659724e-04 2.3006976e-01]\n [ 5.1768795e-02 -2.6795717e-03 1.9614242e-01]\n [ 1.4937104e-01 9.3771279e-02 1.4581835e-01]\n [-3.0786512e-02 -7.2409913e-02 2.6079306e-01]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.54634, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIe4UF9wNe97+UhpRSlIwBbJRLMowBdJRHQJXkv7FbVz91fZQoaAZoCWgPQwiafLPNjWkCwJSGlFKUaBVLMmgWR0CV5Dme18b8dX2UKGgGaAloD0MIfH+D9uoj+r+UhpRSlGgVSzJoFkdAleOpm/WUbHV9lChoBmgJaA9DCLfvUX+9Avy/lIaUUpRoFUsyaBZHQJXjIsNDtw91fZQoaAZoCWgPQwjAsz16w/36v5SGlFKUaBVLMmgWR0CV5qvCdjG2dX2UKGgGaAloD0MIpONqZFe6AsCUhpRSlGgVSzJoFkdAleYlsYVIqnV9lChoBmgJaA9DCMRfkzXqYf2/lIaUUpRoFUsyaBZHQJXllT987ZF1fZQoaAZoCWgPQwhEpREz+7wBwJSGlFKUaBVLMmgWR0CV5Q6w+t8vdX2UKGgGaAloD0MIFQMkmkCxAsCUhpRSlGgVSzJoFkdAleihFZxJd3V9lChoBmgJaA9DCAb1LXO6DAPAlIaUUpRoFUsyaBZHQJXoGwRoRI11fZQoaAZoCWgPQwgz3lZ6bTYCwJSGlFKUaBVLMmgWR0CV54pRXOnmdX2UKGgGaAloD0MIiITv/Q06BcCUhpRSlGgVSzJoFkdAlecDiCJ40XV9lChoBmgJaA9DCC2yne+nxv2/lIaUUpRoFUsyaBZHQJXqlkoWpId1fZQoaAZoCWgPQwi78lmeBzcDwJSGlFKUaBVLMmgWR0CV6hAnUlRhdX2UKGgGaAloD0MIBkfJq3OsAsCUhpRSlGgVSzJoFkdAlemABtDUmXV9lChoBmgJaA9DCG7b96i/Hv6/lIaUUpRoFUsyaBZHQJXo+Sr5qM51fZQoaAZoCWgPQwj8AKQ2cbL2v5SGlFKUaBVLMmgWR0CV7IMwDeTFdX2UKGgGaAloD0MIUrezrzxI/7+UhpRSlGgVSzJoFkdAlev9LlFMI3V9lChoBmgJaA9DCLBXWHA/4P2/lIaUUpRoFUsyaBZHQJXrbIPsiSt1fZQoaAZoCWgPQwiQhlPm5tv7v5SGlFKUaBVLMmgWR0CV6uYmb9ZSdX2UKGgGaAloD0MIDDz3Hi55AMCUhpRSlGgVSzJoFkdAle5k3juKGnV9lChoBmgJaA9DCA7cgTrlEfm/lIaUUpRoFUsyaBZHQJXt3rHEMsp1fZQoaAZoCWgPQwiGAraDERsDwJSGlFKUaBVLMmgWR0CV7U4bS7XhdX2UKGgGaAloD0MICttPxviw/b+UhpRSlGgVSzJoFkdAlezHNHH3lHV9lChoBmgJaA9DCG9FYoIafvm/lIaUUpRoFUsyaBZHQJXwQ3FUADJ1fZQoaAZoCWgPQwhKsg5HV0kAwJSGlFKUaBVLMmgWR0CV771QqI8AdX2UKGgGaAloD0MI3rBtUWaD/b+UhpRSlGgVSzJoFkdAle8sZ9/jKnV9lChoBmgJaA9DCKwCtRg8TPu/lIaUUpRoFUsyaBZHQJXupbxEv011fZQoaAZoCWgPQwiBQ6hSs4f+v5SGlFKUaBVLMmgWR0CV8ijoIOYqdX2UKGgGaAloD0MIVkeOdAZGAcCUhpRSlGgVSzJoFkdAlfGi4e9zwXV9lChoBmgJaA9DCFH51/LKtQHAlIaUUpRoFUsyaBZHQJXxEeZG8VZ1fZQoaAZoCWgPQwiEnziAft/3v5SGlFKUaBVLMmgWR0CV8Is41gpjdX2UKGgGaAloD0MIdR4V/3fE/L+UhpRSlGgVSzJoFkdAlfQL3j+72HV9lChoBmgJaA9DCKVquwm+qf2/lIaUUpRoFUsyaBZHQJXzhcxCY1J1fZQoaAZoCWgPQwi858ByhKwDwJSGlFKUaBVLMmgWR0CV8vTx5LRKdX2UKGgGaAloD0MIU7KchNIX/L+UhpRSlGgVSzJoFkdAlfJuMl1KXnV9lChoBmgJaA9DCG1YU1kUlgfAlIaUUpRoFUsyaBZHQJX2Bw6ySmt1fZQoaAZoCWgPQwhLWvENhY//v5SGlFKUaBVLMmgWR0CV9YFMZgogdX2UKGgGaAloD0MIH6LRHcSO/b+UhpRSlGgVSzJoFkdAlfTwkgOjI3V9lChoBmgJaA9DCMy3Pqw3avm/lIaUUpRoFUsyaBZHQJX0aiaiKzl1fZQoaAZoCWgPQwj59xkXDsT9v5SGlFKUaBVLMmgWR0CV+AEmplz2dX2UKGgGaAloD0MIBORLqOBw9r+UhpRSlGgVSzJoFkdAlfd65Gz8g3V9lChoBmgJaA9DCGKDhZM0//2/lIaUUpRoFUsyaBZHQJX26lpGnXN1fZQoaAZoCWgPQwjpt68D56wBwJSGlFKUaBVLMmgWR0CV9mRYA80UdX2UKGgGaAloD0MIodl1b0ViAcCUhpRSlGgVSzJoFkdAlfnjsY2sJnV9lChoBmgJaA9DCLYQ5KCEmQPAlIaUUpRoFUsyaBZHQJX5XYRNATt1fZQoaAZoCWgPQwgoLPGAskkDwJSGlFKUaBVLMmgWR0CV+My6+WWydX2UKGgGaAloD0MIQgddwqG3/7+UhpRSlGgVSzJoFkdAlfhGCI1tO3V9lChoBmgJaA9DCH4bYrzm1fu/lIaUUpRoFUsyaBZHQJX74j5bhWJ1fZQoaAZoCWgPQwh5PgPqzej9v5SGlFKUaBVLMmgWR0CV+1wHqu8sdX2UKGgGaAloD0MITyDsFKtG+r+UhpRSlGgVSzJoFkdAlfrLIT4+KXV9lChoBmgJaA9DCAHbwYh9Qvu/lIaUUpRoFUsyaBZHQJX6RHSWqtJ1fZQoaAZoCWgPQwjjiSDOwwkAwJSGlFKUaBVLMmgWR0CV/cdxQzk7dX2UKGgGaAloD0MIjgbwFkiQAMCUhpRSlGgVSzJoFkdAlf1BkRSP2nV9lChoBmgJaA9DCDY7Un3nF/m/lIaUUpRoFUsyaBZHQJX8sJv5xip1fZQoaAZoCWgPQwid8X1xqYr+v5SGlFKUaBVLMmgWR0CV/CnlGPPtdX2UKGgGaAloD0MItYe9UMD2+b+UhpRSlGgVSzJoFkdAlf/M2BJ7LXV9lChoBmgJaA9DCNicg2dC0/m/lIaUUpRoFUsyaBZHQJX/SNHYpUh1fZQoaAZoCWgPQwi0rtFyoIf/v5SGlFKUaBVLMmgWR0CV/rmKZUkwdX2UKGgGaAloD0MI7N0f71Xr97+UhpRSlGgVSzJoFkdAlf4zkZJkG3V9lChoBmgJaA9DCFFsBU1L7Pm/lIaUUpRoFUsyaBZHQJYB1wOvt+l1fZQoaAZoCWgPQwibIVUUrzL9v5SGlFKUaBVLMmgWR0CWAVD+BH09dX2UKGgGaAloD0MI8N3mjZNC/r+UhpRSlGgVSzJoFkdAlgDAFPi1iXV9lChoBmgJaA9DCKZDp+fdWPi/lIaUUpRoFUsyaBZHQJYAOeRPoFF1fZQoaAZoCWgPQwhBmrFoOvv9v5SGlFKUaBVLMmgWR0CWA+EKVpsXdX2UKGgGaAloD0MIzox+NJzy/b+UhpRSlGgVSzJoFkdAlgNdBWxQi3V9lChoBmgJaA9DCO87hsd+Fv2/lIaUUpRoFUsyaBZHQJYCziaRZEF1fZQoaAZoCWgPQwjvHwvRIfD9v5SGlFKUaBVLMmgWR0CWAkiLVFx5dX2UKGgGaAloD0MIRGtFm+Pc/b+UhpRSlGgVSzJoFkdAlgXg8wHqvHV9lChoBmgJaA9DCB5Td2UXTPu/lIaUUpRoFUsyaBZHQJYFW0MPSUl1fZQoaAZoCWgPQwhl4lZBDHT8v5SGlFKUaBVLMmgWR0CWBMp3X7LudX2UKGgGaAloD0MIc0hqoWRy+b+UhpRSlGgVSzJoFkdAlgREb1h9cHV9lChoBmgJaA9DCGjO+pRjMvm/lIaUUpRoFUsyaBZHQJYHxf4REnd1fZQoaAZoCWgPQwhkAn6NJEEBwJSGlFKUaBVLMmgWR0CWBz/GVAzIdX2UKGgGaAloD0MICJChYweV/7+UhpRSlGgVSzJoFkdAlgavFNtZWHV9lChoBmgJaA9DCFggelIm9fm/lIaUUpRoFUsyaBZHQJYGKCdz4lB1fZQoaAZoCWgPQwjElbN3RlsAwJSGlFKUaBVLMmgWR0CWCbeenQ6ZdX2UKGgGaAloD0MIyhXe5SK+AcCUhpRSlGgVSzJoFkdAlgkyJXQtz3V9lChoBmgJaA9DCMcOKnEdI/m/lIaUUpRoFUsyaBZHQJYIoj9n9Nx1fZQoaAZoCWgPQwjZ6Qd1kcL6v5SGlFKUaBVLMmgWR0CWCBu14Pf9dX2UKGgGaAloD0MIaf8DrFU7BcCUhpRSlGgVSzJoFkdAlgu7O3UhFHV9lChoBmgJaA9DCJp4B3jSwvy/lIaUUpRoFUsyaBZHQJYLNOuaF251fZQoaAZoCWgPQwg8okJ1c9EAwJSGlFKUaBVLMmgWR0CWCqQtBfKIdX2UKGgGaAloD0MI/N8RFaobA8CUhpRSlGgVSzJoFkdAlgodXHR1HXV9lChoBmgJaA9DCHIycasgxv+/lIaUUpRoFUsyaBZHQJYOoqbz9TB1fZQoaAZoCWgPQwi6hhkaT0QAwJSGlFKUaBVLMmgWR0CWDh1jy4FzdX2UKGgGaAloD0MImx2pvvNL/7+UhpRSlGgVSzJoFkdAlg2ObVjI73V9lChoBmgJaA9DCBDK+zia4/y/lIaUUpRoFUsyaBZHQJYNCU4aP0Z1fZQoaAZoCWgPQwi9baZCPJL/v5SGlFKUaBVLMmgWR0CWEZ642CNCdX2UKGgGaAloD0MI1pC4x9JH/7+UhpRSlGgVSzJoFkdAlhEZ+tr9EXV9lChoBmgJaA9DCOVBeoocIgHAlIaUUpRoFUsyaBZHQJYQilXRw611fZQoaAZoCWgPQwh2UfTAxyD1v5SGlFKUaBVLMmgWR0CWEASpBHCodX2UKGgGaAloD0MI4IPXLm14+7+UhpRSlGgVSzJoFkdAlhS3IIWxhXV9lChoBmgJaA9DCF8mipC6Hf6/lIaUUpRoFUsyaBZHQJYUMngHeJp1fZQoaAZoCWgPQwhLP+Hs1lIDwJSGlFKUaBVLMmgWR0CWE6NCZ4OddX2UKGgGaAloD0MIHAjJAiawAMCUhpRSlGgVSzJoFkdAlhMeZPVNH3V9lChoBmgJaA9DCKPNcW4TLgHAlIaUUpRoFUsyaBZHQJYYEA3kxRF1fZQoaAZoCWgPQwjI0LGDSnwCwJSGlFKUaBVLMmgWR0CWF4w+t8u0dX2UKGgGaAloD0MIs7J9yFsu/r+UhpRSlGgVSzJoFkdAlhb9IoVmBnV9lChoBmgJaA9DCN7oYz4gEP2/lIaUUpRoFUsyaBZHQJYWeRuCPIZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 22683, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (816 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.9439495221246035, "std_reward": 0.26566993434805364, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-12T09:45:48.285692"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eaada242ae8037996045ff4d5362436379dfb721ac648992d4149df06779b5aa
|
3 |
+
size 2380
|