Benjaminabruzzo commited on
Commit
8a1b35f
1 Parent(s): 9fa9719

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 281.48 +/- 28.41
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b62fc330c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b62fc330ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b62fc330d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b62fc330dc0>", "_build": "<function ActorCriticPolicy._build at 0x7b62fc330e50>", "forward": "<function ActorCriticPolicy.forward at 0x7b62fc330ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b62fc330f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b62fc331000>", "_predict": "<function ActorCriticPolicy._predict at 0x7b62fc331090>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b62fc331120>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b62fc3311b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b62fc331240>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b62fc340180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 32768, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694015912402940569, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM33uzwKSzQ87pUpPhbpL74SXCE9AocDOwAAAAAAAAAAAJIbPrsKkrwB+wA+MPczPRim7r3RWxq9AACAPwAAgD/a5Rg+n3G6uwRoALT2kbQyt70dvYL4GDQAAIA/AACAP4D6XD32bA+6YAj2PKbhTDHEuJI6J4WMswAAgD8AAIA/0+hmvrk5mz+OSgO/4QYzvzAtnr6mgjW+AAAAAAAAAAB1apW+9C6lPtGWoz7SsQ+/MbnbvTDbTD4AAAAAAAAAALOoHb2PMh26ZbUuOXeeLDO+aIG77b9NuAAAgD8AAIA/zZ2KvPb0ZbpzlOU7OplWMiXKIbo6ZuEzAACAPwAAgD/NigM8XK9Nuhhzujx28SKyiK+AO4ZiAbQAAIA/AACAP83Juj1xwhe7L14muXf0aj2JNq47GgOZOgAAgD8AAAAAgBhHvrY+HD/WBaC9Y24mvyzJhb66m7U9AAAAAAAAAAAzbAy94USOunKjRLqrczW1Ux2hur2SZDkAAIA/AACAP8Dnz73s8ZI4luuBtZGMwa+5z8o64HW6NAAAgD8AAIA/mpkZOHDqtT9ulHI7ZE/qPo/UFbjazFu6AAAAAAAAAADggRK+aecKvK2YDjsGKg05KB6FPV43QboAAIA/AACAP7PPTz5cXYE+mu+tvEM8ur65VrA97kdXPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -2.2768, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHbTRD1GsqMAWyUS5CMAXSUR0CiDBDc/MW5dX2UKGgGR0Bzgxhqj8DTaAdLp2gIR0CiDDN4RmK7dX2UKGgGR0ByGWJvYODraAdLxWgIR0CiDDus90RwdX2UKGgGR0BziVRhttQ9aAdLumgIR0CiDFNmL9/CdX2UKGgGR0ByGGab4Ju3aAdLv2gIR0CiDGCqyWzGdX2UKGgGR0Bwhh33YcvNaAdLvWgIR0CiDF9MTN+tdX2UKGgGR0BysmtSydFwaAdL42gIR0CiDQvQv6CUdX2UKGgGR0ByZ/enAIppaAdL3WgIR0CiDUVstTUBdX2UKGgGR0BxNOEf1YhdaAdLtWgIR0CiDg7yhBZ7dX2UKGgGR0Bx3jf2saKlaAdLoWgIR0CiDjZDJEH/dX2UKGgGR0BxOdsXSBsiaAdL7mgIR0CiDnqs2eg+dX2UKGgGR0BzeU1n/T9baAdLumgIR0CiDo+pfhMrdX2UKGgGR0BzYhU0elsQaAdLxWgIR0CiDq3sXzlLdX2UKGgGR0ByKgRTS9dvaAdLlmgIR0CiDu6oESuhdX2UKGgGR0BwTWdDpkf+aAdLm2gIR0CiDwcEvCdjdX2UKGgGR0By1z8LronsaAdLq2gIR0CiD0MeXAuadX2UKGgGR0By1kHNX5nEaAdLumgIR0CiD3AEt/WldX2UKGgGR0BxVbqyGBWgaAdL1GgIR0CiD66wUxmDdX2UKGgGR0BzBmxwAEMcaAdLzmgIR0CiD8Ntygf2dX2UKGgGR0Bw/xGus90SaAdLvmgIR0CiEGV/MGHIdX2UKGgGR0BiOnHktEofaAdN6ANoCEdAohC0UEgW8HV9lChoBkdAcVmczImw7mgHS8FoCEdAohC44ffXPXV9lChoBkdAcXgiV0Lc9GgHS6JoCEdAohFr9S/CZXV9lChoBkdAcWJKh+OOsGgHS7doCEdAohGRRGc4HXV9lChoBkdAckEuHvc8DGgHS59oCEdAohHhxWDHwXV9lChoBkdAdJgpwS8J2WgHS+JoCEdAohI74gzP8nV9lChoBkdAcjqZ5Rjz7WgHS7RoCEdAohKqnUDuB3V9lChoBkdAcRbNhVlwtWgHS9xoCEdAohLLjo6jnHV9lChoBkdAc5SCb+cYqGgHS9JoCEdAohMADPnjhnV9lChoBkdAcHHdK/VRUGgHS61oCEdAohMBz3h4uHV9lChoBkdAcHs0xdpqRGgHS79oCEdAohMV54W1t3V9lChoBkdAcVfRUm2LHmgHS7BoCEdAohMmRRuTA3V9lChoBkdAcHpIWP91l2gHS6doCEdAohPoht+CsnV9lChoBkdAcJYwg1WKdmgHS7RoCEdAohQugxrSE3V9lChoBkdAYcdKoybhFWgHTegDaAhHQKIUgsI3R5V1fZQoaAZHQG3CKoAGSp1oB0uhaAhHQKIUj7P6bfB1fZQoaAZHQHC+vGMn7YVoB0ufaAhHQKIU82Zy+6B1fZQoaAZHQHG5eZ1FH8VoB0vtaAhHQKIU+7eVLSN1fZQoaAZHQHIGRI4EOiFoB0vYaAhHQKIVqstkFwF1fZQoaAZHQHA9CrksBhhoB0uTaAhHQKIVvGn4wh51fZQoaAZHQHLzcZ9/jKhoB0vLaAhHQKIWCsFMZgp1fZQoaAZHQHDNuirT6SFoB0uzaAhHQKIWHNMXaal1fZQoaAZHQG+tPDgqEvloB0uuaAhHQKIWNX+2mYV1fZQoaAZHQHCKHMlkYoBoB0u0aAhHQKIWX531SO11fZQoaAZHQHEx3AAQxvhoB0vDaAhHQKIWk73fygB1fZQoaAZHQHNd9v863iJoB0vbaAhHQKIWkmu1WsB1fZQoaAZHQHG1k9ECvHNoB0uuaAhHQKIWzBSDRMN1fZQoaAZHQHG5Cg5BC2NoB0u1aAhHQKIXBJr+Hah1fZQoaAZHQHCJNJrcj7hoB0uzaAhHQKIXOUHpr1x1fZQoaAZHQHGsbK3d9DxoB0ugaAhHQKIXP1GLDQ91fZQoaAZHQHCH9ld1MdtoB0vDaAhHQKIXrwYtQKt1fZQoaAZHQHIcdtygf2doB0vhaAhHQKIXvKZlWfd1fZQoaAZHQHCHSbDuSfVoB0ujaAhHQKIXz8x9G7V1fZQoaAZHQHCMf863iJhoB0u9aAhHQKIYEhN/OMV1fZQoaAZHQHD+b8FY+0RoB0uraAhHQKIYHXPqs2h1fZQoaAZHQHORU4R28qZoB0vJaAhHQKIYlai9Iwx1fZQoaAZHQHFbIatLcsVoB0u+aAhHQKIYkpG4I8h1fZQoaAZHQHE4xgRbr1NoB0uwaAhHQKIYneRgZ0l1fZQoaAZHQHKq7KJVKf5oB0u2aAhHQKIYsd3B55Z1fZQoaAZHQHHHHlCCz1NoB0vfaAhHQKIYyOd5IH11fZQoaAZHQHGBMFdLQHBoB0uVaAhHQKIZBz+3pfR1fZQoaAZHQHF7uGKyfL9oB0u9aAhHQKIZBWeYlY51fZQoaAZHQEaqQDmr8zhoB0tgaAhHQKIZOUlAu7J1fZQoaAZHQHP0QxvegthoB0u7aAhHQKIZP2M85jp1fZQoaAZHQHL2SdJ8OTdoB0u2aAhHQKIZZqesgdR1fZQoaAZHQGJ9tjCpFThoB03oA2gIR0CiGZkmplz2dX2UKGgGR0BuEjU/fO2RaAdLo2gIR0CiGbd9Ujs2dX2UKGgGR0BwjS4J/oaDaAdLpmgIR0CiGgV9Wp6ydX2UKGgGR0BxOAb4rSVoaAdL1mgIR0CiGjNGus90dX2UKGgGR0BymetPpIMCaAdL7GgIR0CiGmVea8YidX2UKGgGR0BwgfSBshxHaAdLq2gIR0CiGo9ic5KfdX2UKGgGR0BwsOP7vXsgaAdLu2gIR0CiGrZH3DekdX2UKGgGR0Bxo7vx6OYIaAdLw2gIR0CiGsknssxxdX2UKGgGR0ByW/gOz6acaAdLxmgIR0CiGvJyZKFqdX2UKGgGR0BxEVfReC04aAdLvGgIR0CiGyDYAbQ1dX2UKGgGR0By7d62OQyRaAdLmWgIR0CiG0c6FM7EdX2UKGgGR0ByTbKxLTQWaAdLyWgIR0CiG0NUOuq4dX2UKGgGR0ByWGMju8braAdL3mgIR0CiG0b7sOXmdX2UKGgGR0BxnXoyKvV3aAdLw2gIR0CiG15oPCl8dX2UKGgGR0BxwSgbp/wzaAdLl2gIR0CiG2DmbLEDdX2UKGgGR0B0G7T1CgK4aAdL1mgIR0CiG5HpSrHVdX2UKGgGR0Bx5lng5zYFaAdL22gIR0CiG7+HaewtdX2UKGgGR0BxgFAPd2xIaAdLqWgIR0CiG9RnezlcdX2UKGgGR0ByUChf0EowaAdLpGgIR0CiG++vhZQpdX2UKGgGR0Bxpyj4593KaAdLmGgIR0CiG/2lMyrQdX2UKGgGR0BwHs1zhgmaaAdLsWgIR0CiHGR4hUzbdX2UKGgGR0Bmts8YAKfGaAdN6ANoCEdAohzPFrEcbXV9lChoBkdAcgidyDIzWWgHS6FoCEdAohzvLcKw6nV9lChoBkdAcWLHMlkYoGgHS8BoCEdAohzzt9hJAnV9lChoBkdAcod9XLeQ+2gHS9BoCEdAohz6U5dWyXV9lChoBkdAcdfpu/Dcd2gHS7toCEdAoh010PpY93V9lChoBkdAckDsaKk2xmgHS8loCEdAoh02mR/3FnV9lChoBkdAcSg642CNCWgHS7xoCEdAoh03nyNGVnV9lChoBkdAcNI4L1EmY2gHS7NoCEdAoh04t6HCXXV9lChoBkdAceAUTcqOLmgHS5BoCEdAoh1Df3vhInV9lChoBkdAcYYFXJYDDGgHS6RoCEdAoh1GpjtojHV9lChoBkdAb/B2ys0YTGgHS5hoCEdAoh2EAR02cnV9lChoBkdAbrsCQLeANGgHS7VoCEdAoh3fVNHpbHV9lChoBkdAcrMviLl3hWgHS9toCEdAoh4ekBS1mnV9lChoBkdASDdKIznA7GgHS39oCEdAoh6OlQ/HHXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 495, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cfe4ccd2a710eed6a18146a9d4ecc844e0ab24e75eb6e7497483a91ef170893
3
+ size 146611
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b62fc330c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b62fc330ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b62fc330d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b62fc330dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b62fc330e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b62fc330ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b62fc330f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b62fc331000>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b62fc331090>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b62fc331120>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b62fc3311b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b62fc331240>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b62fc340180>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 32768,
25
+ "_total_timesteps": 10000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1694015912402940569,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM33uzwKSzQ87pUpPhbpL74SXCE9AocDOwAAAAAAAAAAAJIbPrsKkrwB+wA+MPczPRim7r3RWxq9AACAPwAAgD/a5Rg+n3G6uwRoALT2kbQyt70dvYL4GDQAAIA/AACAP4D6XD32bA+6YAj2PKbhTDHEuJI6J4WMswAAgD8AAIA/0+hmvrk5mz+OSgO/4QYzvzAtnr6mgjW+AAAAAAAAAAB1apW+9C6lPtGWoz7SsQ+/MbnbvTDbTD4AAAAAAAAAALOoHb2PMh26ZbUuOXeeLDO+aIG77b9NuAAAgD8AAIA/zZ2KvPb0ZbpzlOU7OplWMiXKIbo6ZuEzAACAPwAAgD/NigM8XK9Nuhhzujx28SKyiK+AO4ZiAbQAAIA/AACAP83Juj1xwhe7L14muXf0aj2JNq47GgOZOgAAgD8AAAAAgBhHvrY+HD/WBaC9Y24mvyzJhb66m7U9AAAAAAAAAAAzbAy94USOunKjRLqrczW1Ux2hur2SZDkAAIA/AACAP8Dnz73s8ZI4luuBtZGMwa+5z8o64HW6NAAAgD8AAIA/mpkZOHDqtT9ulHI7ZE/qPo/UFbjazFu6AAAAAAAAAADggRK+aecKvK2YDjsGKg05KB6FPV43QboAAIA/AACAP7PPTz5cXYE+mu+tvEM8ur65VrA97kdXPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -2.2768,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHbTRD1GsqMAWyUS5CMAXSUR0CiDBDc/MW5dX2UKGgGR0Bzgxhqj8DTaAdLp2gIR0CiDDN4RmK7dX2UKGgGR0ByGWJvYODraAdLxWgIR0CiDDus90RwdX2UKGgGR0BziVRhttQ9aAdLumgIR0CiDFNmL9/CdX2UKGgGR0ByGGab4Ju3aAdLv2gIR0CiDGCqyWzGdX2UKGgGR0Bwhh33YcvNaAdLvWgIR0CiDF9MTN+tdX2UKGgGR0BysmtSydFwaAdL42gIR0CiDQvQv6CUdX2UKGgGR0ByZ/enAIppaAdL3WgIR0CiDUVstTUBdX2UKGgGR0BxNOEf1YhdaAdLtWgIR0CiDg7yhBZ7dX2UKGgGR0Bx3jf2saKlaAdLoWgIR0CiDjZDJEH/dX2UKGgGR0BxOdsXSBsiaAdL7mgIR0CiDnqs2eg+dX2UKGgGR0BzeU1n/T9baAdLumgIR0CiDo+pfhMrdX2UKGgGR0BzYhU0elsQaAdLxWgIR0CiDq3sXzlLdX2UKGgGR0ByKgRTS9dvaAdLlmgIR0CiDu6oESuhdX2UKGgGR0BwTWdDpkf+aAdLm2gIR0CiDwcEvCdjdX2UKGgGR0By1z8LronsaAdLq2gIR0CiD0MeXAuadX2UKGgGR0By1kHNX5nEaAdLumgIR0CiD3AEt/WldX2UKGgGR0BxVbqyGBWgaAdL1GgIR0CiD66wUxmDdX2UKGgGR0BzBmxwAEMcaAdLzmgIR0CiD8Ntygf2dX2UKGgGR0Bw/xGus90SaAdLvmgIR0CiEGV/MGHIdX2UKGgGR0BiOnHktEofaAdN6ANoCEdAohC0UEgW8HV9lChoBkdAcVmczImw7mgHS8FoCEdAohC44ffXPXV9lChoBkdAcXgiV0Lc9GgHS6JoCEdAohFr9S/CZXV9lChoBkdAcWJKh+OOsGgHS7doCEdAohGRRGc4HXV9lChoBkdAckEuHvc8DGgHS59oCEdAohHhxWDHwXV9lChoBkdAdJgpwS8J2WgHS+JoCEdAohI74gzP8nV9lChoBkdAcjqZ5Rjz7WgHS7RoCEdAohKqnUDuB3V9lChoBkdAcRbNhVlwtWgHS9xoCEdAohLLjo6jnHV9lChoBkdAc5SCb+cYqGgHS9JoCEdAohMADPnjhnV9lChoBkdAcHHdK/VRUGgHS61oCEdAohMBz3h4uHV9lChoBkdAcHs0xdpqRGgHS79oCEdAohMV54W1t3V9lChoBkdAcVfRUm2LHmgHS7BoCEdAohMmRRuTA3V9lChoBkdAcHpIWP91l2gHS6doCEdAohPoht+CsnV9lChoBkdAcJYwg1WKdmgHS7RoCEdAohQugxrSE3V9lChoBkdAYcdKoybhFWgHTegDaAhHQKIUgsI3R5V1fZQoaAZHQG3CKoAGSp1oB0uhaAhHQKIUj7P6bfB1fZQoaAZHQHC+vGMn7YVoB0ufaAhHQKIU82Zy+6B1fZQoaAZHQHG5eZ1FH8VoB0vtaAhHQKIU+7eVLSN1fZQoaAZHQHIGRI4EOiFoB0vYaAhHQKIVqstkFwF1fZQoaAZHQHA9CrksBhhoB0uTaAhHQKIVvGn4wh51fZQoaAZHQHLzcZ9/jKhoB0vLaAhHQKIWCsFMZgp1fZQoaAZHQHDNuirT6SFoB0uzaAhHQKIWHNMXaal1fZQoaAZHQG+tPDgqEvloB0uuaAhHQKIWNX+2mYV1fZQoaAZHQHCKHMlkYoBoB0u0aAhHQKIWX531SO11fZQoaAZHQHEx3AAQxvhoB0vDaAhHQKIWk73fygB1fZQoaAZHQHNd9v863iJoB0vbaAhHQKIWkmu1WsB1fZQoaAZHQHG1k9ECvHNoB0uuaAhHQKIWzBSDRMN1fZQoaAZHQHG5Cg5BC2NoB0u1aAhHQKIXBJr+Hah1fZQoaAZHQHCJNJrcj7hoB0uzaAhHQKIXOUHpr1x1fZQoaAZHQHGsbK3d9DxoB0ugaAhHQKIXP1GLDQ91fZQoaAZHQHCH9ld1MdtoB0vDaAhHQKIXrwYtQKt1fZQoaAZHQHIcdtygf2doB0vhaAhHQKIXvKZlWfd1fZQoaAZHQHCHSbDuSfVoB0ujaAhHQKIXz8x9G7V1fZQoaAZHQHCMf863iJhoB0u9aAhHQKIYEhN/OMV1fZQoaAZHQHD+b8FY+0RoB0uraAhHQKIYHXPqs2h1fZQoaAZHQHORU4R28qZoB0vJaAhHQKIYlai9Iwx1fZQoaAZHQHFbIatLcsVoB0u+aAhHQKIYkpG4I8h1fZQoaAZHQHE4xgRbr1NoB0uwaAhHQKIYneRgZ0l1fZQoaAZHQHKq7KJVKf5oB0u2aAhHQKIYsd3B55Z1fZQoaAZHQHHHHlCCz1NoB0vfaAhHQKIYyOd5IH11fZQoaAZHQHGBMFdLQHBoB0uVaAhHQKIZBz+3pfR1fZQoaAZHQHF7uGKyfL9oB0u9aAhHQKIZBWeYlY51fZQoaAZHQEaqQDmr8zhoB0tgaAhHQKIZOUlAu7J1fZQoaAZHQHP0QxvegthoB0u7aAhHQKIZP2M85jp1fZQoaAZHQHL2SdJ8OTdoB0u2aAhHQKIZZqesgdR1fZQoaAZHQGJ9tjCpFThoB03oA2gIR0CiGZkmplz2dX2UKGgGR0BuEjU/fO2RaAdLo2gIR0CiGbd9Ujs2dX2UKGgGR0BwjS4J/oaDaAdLpmgIR0CiGgV9Wp6ydX2UKGgGR0BxOAb4rSVoaAdL1mgIR0CiGjNGus90dX2UKGgGR0BymetPpIMCaAdL7GgIR0CiGmVea8YidX2UKGgGR0BwgfSBshxHaAdLq2gIR0CiGo9ic5KfdX2UKGgGR0BwsOP7vXsgaAdLu2gIR0CiGrZH3DekdX2UKGgGR0Bxo7vx6OYIaAdLw2gIR0CiGsknssxxdX2UKGgGR0ByW/gOz6acaAdLxmgIR0CiGvJyZKFqdX2UKGgGR0BxEVfReC04aAdLvGgIR0CiGyDYAbQ1dX2UKGgGR0By7d62OQyRaAdLmWgIR0CiG0c6FM7EdX2UKGgGR0ByTbKxLTQWaAdLyWgIR0CiG0NUOuq4dX2UKGgGR0ByWGMju8braAdL3mgIR0CiG0b7sOXmdX2UKGgGR0BxnXoyKvV3aAdLw2gIR0CiG15oPCl8dX2UKGgGR0BxwSgbp/wzaAdLl2gIR0CiG2DmbLEDdX2UKGgGR0B0G7T1CgK4aAdL1mgIR0CiG5HpSrHVdX2UKGgGR0Bx5lng5zYFaAdL22gIR0CiG7+HaewtdX2UKGgGR0BxgFAPd2xIaAdLqWgIR0CiG9RnezlcdX2UKGgGR0ByUChf0EowaAdLpGgIR0CiG++vhZQpdX2UKGgGR0Bxpyj4593KaAdLmGgIR0CiG/2lMyrQdX2UKGgGR0BwHs1zhgmaaAdLsWgIR0CiHGR4hUzbdX2UKGgGR0Bmts8YAKfGaAdN6ANoCEdAohzPFrEcbXV9lChoBkdAcgidyDIzWWgHS6FoCEdAohzvLcKw6nV9lChoBkdAcWLHMlkYoGgHS8BoCEdAohzzt9hJAnV9lChoBkdAcod9XLeQ+2gHS9BoCEdAohz6U5dWyXV9lChoBkdAcdfpu/Dcd2gHS7toCEdAoh010PpY93V9lChoBkdAckDsaKk2xmgHS8loCEdAoh02mR/3FnV9lChoBkdAcSg642CNCWgHS7xoCEdAoh03nyNGVnV9lChoBkdAcNI4L1EmY2gHS7NoCEdAoh04t6HCXXV9lChoBkdAceAUTcqOLmgHS5BoCEdAoh1Df3vhInV9lChoBkdAcYYFXJYDDGgHS6RoCEdAoh1GpjtojHV9lChoBkdAb/B2ys0YTGgHS5hoCEdAoh2EAR02cnV9lChoBkdAbrsCQLeANGgHS7VoCEdAoh3fVNHpbHV9lChoBkdAcrMviLl3hWgHS9toCEdAoh4ekBS1mnV9lChoBkdASDdKIznA7GgHS39oCEdAoh6OlQ/HHXVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 495,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36d15dfd5eb44039cc9b39b1d23244f6b181fc9e3858f121425befb98c671f32
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c62c4cb33636e19c6e5e0b3ae74ad92eafec35b77a50bd8d7a1ce0fd08c080e1
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (175 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 281.47774379687587, "std_reward": 28.409403127361518, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-06T16:16:00.301898"}