Benjaminabruzzo
commited on
Commit
•
8a1b35f
1
Parent(s):
9fa9719
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 281.48 +/- 28.41
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b62fc330c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b62fc330ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b62fc330d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b62fc330dc0>", "_build": "<function ActorCriticPolicy._build at 0x7b62fc330e50>", "forward": "<function ActorCriticPolicy.forward at 0x7b62fc330ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b62fc330f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b62fc331000>", "_predict": "<function ActorCriticPolicy._predict at 0x7b62fc331090>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b62fc331120>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b62fc3311b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b62fc331240>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b62fc340180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 32768, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694015912402940569, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM33uzwKSzQ87pUpPhbpL74SXCE9AocDOwAAAAAAAAAAAJIbPrsKkrwB+wA+MPczPRim7r3RWxq9AACAPwAAgD/a5Rg+n3G6uwRoALT2kbQyt70dvYL4GDQAAIA/AACAP4D6XD32bA+6YAj2PKbhTDHEuJI6J4WMswAAgD8AAIA/0+hmvrk5mz+OSgO/4QYzvzAtnr6mgjW+AAAAAAAAAAB1apW+9C6lPtGWoz7SsQ+/MbnbvTDbTD4AAAAAAAAAALOoHb2PMh26ZbUuOXeeLDO+aIG77b9NuAAAgD8AAIA/zZ2KvPb0ZbpzlOU7OplWMiXKIbo6ZuEzAACAPwAAgD/NigM8XK9Nuhhzujx28SKyiK+AO4ZiAbQAAIA/AACAP83Juj1xwhe7L14muXf0aj2JNq47GgOZOgAAgD8AAAAAgBhHvrY+HD/WBaC9Y24mvyzJhb66m7U9AAAAAAAAAAAzbAy94USOunKjRLqrczW1Ux2hur2SZDkAAIA/AACAP8Dnz73s8ZI4luuBtZGMwa+5z8o64HW6NAAAgD8AAIA/mpkZOHDqtT9ulHI7ZE/qPo/UFbjazFu6AAAAAAAAAADggRK+aecKvK2YDjsGKg05KB6FPV43QboAAIA/AACAP7PPTz5cXYE+mu+tvEM8ur65VrA97kdXPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -2.2768, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHbTRD1GsqMAWyUS5CMAXSUR0CiDBDc/MW5dX2UKGgGR0Bzgxhqj8DTaAdLp2gIR0CiDDN4RmK7dX2UKGgGR0ByGWJvYODraAdLxWgIR0CiDDus90RwdX2UKGgGR0BziVRhttQ9aAdLumgIR0CiDFNmL9/CdX2UKGgGR0ByGGab4Ju3aAdLv2gIR0CiDGCqyWzGdX2UKGgGR0Bwhh33YcvNaAdLvWgIR0CiDF9MTN+tdX2UKGgGR0BysmtSydFwaAdL42gIR0CiDQvQv6CUdX2UKGgGR0ByZ/enAIppaAdL3WgIR0CiDUVstTUBdX2UKGgGR0BxNOEf1YhdaAdLtWgIR0CiDg7yhBZ7dX2UKGgGR0Bx3jf2saKlaAdLoWgIR0CiDjZDJEH/dX2UKGgGR0BxOdsXSBsiaAdL7mgIR0CiDnqs2eg+dX2UKGgGR0BzeU1n/T9baAdLumgIR0CiDo+pfhMrdX2UKGgGR0BzYhU0elsQaAdLxWgIR0CiDq3sXzlLdX2UKGgGR0ByKgRTS9dvaAdLlmgIR0CiDu6oESuhdX2UKGgGR0BwTWdDpkf+aAdLm2gIR0CiDwcEvCdjdX2UKGgGR0By1z8LronsaAdLq2gIR0CiD0MeXAuadX2UKGgGR0By1kHNX5nEaAdLumgIR0CiD3AEt/WldX2UKGgGR0BxVbqyGBWgaAdL1GgIR0CiD66wUxmDdX2UKGgGR0BzBmxwAEMcaAdLzmgIR0CiD8Ntygf2dX2UKGgGR0Bw/xGus90SaAdLvmgIR0CiEGV/MGHIdX2UKGgGR0BiOnHktEofaAdN6ANoCEdAohC0UEgW8HV9lChoBkdAcVmczImw7mgHS8FoCEdAohC44ffXPXV9lChoBkdAcXgiV0Lc9GgHS6JoCEdAohFr9S/CZXV9lChoBkdAcWJKh+OOsGgHS7doCEdAohGRRGc4HXV9lChoBkdAckEuHvc8DGgHS59oCEdAohHhxWDHwXV9lChoBkdAdJgpwS8J2WgHS+JoCEdAohI74gzP8nV9lChoBkdAcjqZ5Rjz7WgHS7RoCEdAohKqnUDuB3V9lChoBkdAcRbNhVlwtWgHS9xoCEdAohLLjo6jnHV9lChoBkdAc5SCb+cYqGgHS9JoCEdAohMADPnjhnV9lChoBkdAcHHdK/VRUGgHS61oCEdAohMBz3h4uHV9lChoBkdAcHs0xdpqRGgHS79oCEdAohMV54W1t3V9lChoBkdAcVfRUm2LHmgHS7BoCEdAohMmRRuTA3V9lChoBkdAcHpIWP91l2gHS6doCEdAohPoht+CsnV9lChoBkdAcJYwg1WKdmgHS7RoCEdAohQugxrSE3V9lChoBkdAYcdKoybhFWgHTegDaAhHQKIUgsI3R5V1fZQoaAZHQG3CKoAGSp1oB0uhaAhHQKIUj7P6bfB1fZQoaAZHQHC+vGMn7YVoB0ufaAhHQKIU82Zy+6B1fZQoaAZHQHG5eZ1FH8VoB0vtaAhHQKIU+7eVLSN1fZQoaAZHQHIGRI4EOiFoB0vYaAhHQKIVqstkFwF1fZQoaAZHQHA9CrksBhhoB0uTaAhHQKIVvGn4wh51fZQoaAZHQHLzcZ9/jKhoB0vLaAhHQKIWCsFMZgp1fZQoaAZHQHDNuirT6SFoB0uzaAhHQKIWHNMXaal1fZQoaAZHQG+tPDgqEvloB0uuaAhHQKIWNX+2mYV1fZQoaAZHQHCKHMlkYoBoB0u0aAhHQKIWX531SO11fZQoaAZHQHEx3AAQxvhoB0vDaAhHQKIWk73fygB1fZQoaAZHQHNd9v863iJoB0vbaAhHQKIWkmu1WsB1fZQoaAZHQHG1k9ECvHNoB0uuaAhHQKIWzBSDRMN1fZQoaAZHQHG5Cg5BC2NoB0u1aAhHQKIXBJr+Hah1fZQoaAZHQHCJNJrcj7hoB0uzaAhHQKIXOUHpr1x1fZQoaAZHQHGsbK3d9DxoB0ugaAhHQKIXP1GLDQ91fZQoaAZHQHCH9ld1MdtoB0vDaAhHQKIXrwYtQKt1fZQoaAZHQHIcdtygf2doB0vhaAhHQKIXvKZlWfd1fZQoaAZHQHCHSbDuSfVoB0ujaAhHQKIXz8x9G7V1fZQoaAZHQHCMf863iJhoB0u9aAhHQKIYEhN/OMV1fZQoaAZHQHD+b8FY+0RoB0uraAhHQKIYHXPqs2h1fZQoaAZHQHORU4R28qZoB0vJaAhHQKIYlai9Iwx1fZQoaAZHQHFbIatLcsVoB0u+aAhHQKIYkpG4I8h1fZQoaAZHQHE4xgRbr1NoB0uwaAhHQKIYneRgZ0l1fZQoaAZHQHKq7KJVKf5oB0u2aAhHQKIYsd3B55Z1fZQoaAZHQHHHHlCCz1NoB0vfaAhHQKIYyOd5IH11fZQoaAZHQHGBMFdLQHBoB0uVaAhHQKIZBz+3pfR1fZQoaAZHQHF7uGKyfL9oB0u9aAhHQKIZBWeYlY51fZQoaAZHQEaqQDmr8zhoB0tgaAhHQKIZOUlAu7J1fZQoaAZHQHP0QxvegthoB0u7aAhHQKIZP2M85jp1fZQoaAZHQHL2SdJ8OTdoB0u2aAhHQKIZZqesgdR1fZQoaAZHQGJ9tjCpFThoB03oA2gIR0CiGZkmplz2dX2UKGgGR0BuEjU/fO2RaAdLo2gIR0CiGbd9Ujs2dX2UKGgGR0BwjS4J/oaDaAdLpmgIR0CiGgV9Wp6ydX2UKGgGR0BxOAb4rSVoaAdL1mgIR0CiGjNGus90dX2UKGgGR0BymetPpIMCaAdL7GgIR0CiGmVea8YidX2UKGgGR0BwgfSBshxHaAdLq2gIR0CiGo9ic5KfdX2UKGgGR0BwsOP7vXsgaAdLu2gIR0CiGrZH3DekdX2UKGgGR0Bxo7vx6OYIaAdLw2gIR0CiGsknssxxdX2UKGgGR0ByW/gOz6acaAdLxmgIR0CiGvJyZKFqdX2UKGgGR0BxEVfReC04aAdLvGgIR0CiGyDYAbQ1dX2UKGgGR0By7d62OQyRaAdLmWgIR0CiG0c6FM7EdX2UKGgGR0ByTbKxLTQWaAdLyWgIR0CiG0NUOuq4dX2UKGgGR0ByWGMju8braAdL3mgIR0CiG0b7sOXmdX2UKGgGR0BxnXoyKvV3aAdLw2gIR0CiG15oPCl8dX2UKGgGR0BxwSgbp/wzaAdLl2gIR0CiG2DmbLEDdX2UKGgGR0B0G7T1CgK4aAdL1mgIR0CiG5HpSrHVdX2UKGgGR0Bx5lng5zYFaAdL22gIR0CiG7+HaewtdX2UKGgGR0BxgFAPd2xIaAdLqWgIR0CiG9RnezlcdX2UKGgGR0ByUChf0EowaAdLpGgIR0CiG++vhZQpdX2UKGgGR0Bxpyj4593KaAdLmGgIR0CiG/2lMyrQdX2UKGgGR0BwHs1zhgmaaAdLsWgIR0CiHGR4hUzbdX2UKGgGR0Bmts8YAKfGaAdN6ANoCEdAohzPFrEcbXV9lChoBkdAcgidyDIzWWgHS6FoCEdAohzvLcKw6nV9lChoBkdAcWLHMlkYoGgHS8BoCEdAohzzt9hJAnV9lChoBkdAcod9XLeQ+2gHS9BoCEdAohz6U5dWyXV9lChoBkdAcdfpu/Dcd2gHS7toCEdAoh010PpY93V9lChoBkdAckDsaKk2xmgHS8loCEdAoh02mR/3FnV9lChoBkdAcSg642CNCWgHS7xoCEdAoh03nyNGVnV9lChoBkdAcNI4L1EmY2gHS7NoCEdAoh04t6HCXXV9lChoBkdAceAUTcqOLmgHS5BoCEdAoh1Df3vhInV9lChoBkdAcYYFXJYDDGgHS6RoCEdAoh1GpjtojHV9lChoBkdAb/B2ys0YTGgHS5hoCEdAoh2EAR02cnV9lChoBkdAbrsCQLeANGgHS7VoCEdAoh3fVNHpbHV9lChoBkdAcrMviLl3hWgHS9toCEdAoh4ekBS1mnV9lChoBkdASDdKIznA7GgHS39oCEdAoh6OlQ/HHXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 495, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cfe4ccd2a710eed6a18146a9d4ecc844e0ab24e75eb6e7497483a91ef170893
|
3 |
+
size 146611
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7b62fc330c10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b62fc330ca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b62fc330d30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b62fc330dc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7b62fc330e50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7b62fc330ee0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7b62fc330f70>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b62fc331000>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7b62fc331090>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b62fc331120>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b62fc3311b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7b62fc331240>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7b62fc340180>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 32768,
|
25 |
+
"_total_timesteps": 10000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1694015912402940569,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM33uzwKSzQ87pUpPhbpL74SXCE9AocDOwAAAAAAAAAAAJIbPrsKkrwB+wA+MPczPRim7r3RWxq9AACAPwAAgD/a5Rg+n3G6uwRoALT2kbQyt70dvYL4GDQAAIA/AACAP4D6XD32bA+6YAj2PKbhTDHEuJI6J4WMswAAgD8AAIA/0+hmvrk5mz+OSgO/4QYzvzAtnr6mgjW+AAAAAAAAAAB1apW+9C6lPtGWoz7SsQ+/MbnbvTDbTD4AAAAAAAAAALOoHb2PMh26ZbUuOXeeLDO+aIG77b9NuAAAgD8AAIA/zZ2KvPb0ZbpzlOU7OplWMiXKIbo6ZuEzAACAPwAAgD/NigM8XK9Nuhhzujx28SKyiK+AO4ZiAbQAAIA/AACAP83Juj1xwhe7L14muXf0aj2JNq47GgOZOgAAgD8AAAAAgBhHvrY+HD/WBaC9Y24mvyzJhb66m7U9AAAAAAAAAAAzbAy94USOunKjRLqrczW1Ux2hur2SZDkAAIA/AACAP8Dnz73s8ZI4luuBtZGMwa+5z8o64HW6NAAAgD8AAIA/mpkZOHDqtT9ulHI7ZE/qPo/UFbjazFu6AAAAAAAAAADggRK+aecKvK2YDjsGKg05KB6FPV43QboAAIA/AACAP7PPTz5cXYE+mu+tvEM8ur65VrA97kdXPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -2.2768,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHbTRD1GsqMAWyUS5CMAXSUR0CiDBDc/MW5dX2UKGgGR0Bzgxhqj8DTaAdLp2gIR0CiDDN4RmK7dX2UKGgGR0ByGWJvYODraAdLxWgIR0CiDDus90RwdX2UKGgGR0BziVRhttQ9aAdLumgIR0CiDFNmL9/CdX2UKGgGR0ByGGab4Ju3aAdLv2gIR0CiDGCqyWzGdX2UKGgGR0Bwhh33YcvNaAdLvWgIR0CiDF9MTN+tdX2UKGgGR0BysmtSydFwaAdL42gIR0CiDQvQv6CUdX2UKGgGR0ByZ/enAIppaAdL3WgIR0CiDUVstTUBdX2UKGgGR0BxNOEf1YhdaAdLtWgIR0CiDg7yhBZ7dX2UKGgGR0Bx3jf2saKlaAdLoWgIR0CiDjZDJEH/dX2UKGgGR0BxOdsXSBsiaAdL7mgIR0CiDnqs2eg+dX2UKGgGR0BzeU1n/T9baAdLumgIR0CiDo+pfhMrdX2UKGgGR0BzYhU0elsQaAdLxWgIR0CiDq3sXzlLdX2UKGgGR0ByKgRTS9dvaAdLlmgIR0CiDu6oESuhdX2UKGgGR0BwTWdDpkf+aAdLm2gIR0CiDwcEvCdjdX2UKGgGR0By1z8LronsaAdLq2gIR0CiD0MeXAuadX2UKGgGR0By1kHNX5nEaAdLumgIR0CiD3AEt/WldX2UKGgGR0BxVbqyGBWgaAdL1GgIR0CiD66wUxmDdX2UKGgGR0BzBmxwAEMcaAdLzmgIR0CiD8Ntygf2dX2UKGgGR0Bw/xGus90SaAdLvmgIR0CiEGV/MGHIdX2UKGgGR0BiOnHktEofaAdN6ANoCEdAohC0UEgW8HV9lChoBkdAcVmczImw7mgHS8FoCEdAohC44ffXPXV9lChoBkdAcXgiV0Lc9GgHS6JoCEdAohFr9S/CZXV9lChoBkdAcWJKh+OOsGgHS7doCEdAohGRRGc4HXV9lChoBkdAckEuHvc8DGgHS59oCEdAohHhxWDHwXV9lChoBkdAdJgpwS8J2WgHS+JoCEdAohI74gzP8nV9lChoBkdAcjqZ5Rjz7WgHS7RoCEdAohKqnUDuB3V9lChoBkdAcRbNhVlwtWgHS9xoCEdAohLLjo6jnHV9lChoBkdAc5SCb+cYqGgHS9JoCEdAohMADPnjhnV9lChoBkdAcHHdK/VRUGgHS61oCEdAohMBz3h4uHV9lChoBkdAcHs0xdpqRGgHS79oCEdAohMV54W1t3V9lChoBkdAcVfRUm2LHmgHS7BoCEdAohMmRRuTA3V9lChoBkdAcHpIWP91l2gHS6doCEdAohPoht+CsnV9lChoBkdAcJYwg1WKdmgHS7RoCEdAohQugxrSE3V9lChoBkdAYcdKoybhFWgHTegDaAhHQKIUgsI3R5V1fZQoaAZHQG3CKoAGSp1oB0uhaAhHQKIUj7P6bfB1fZQoaAZHQHC+vGMn7YVoB0ufaAhHQKIU82Zy+6B1fZQoaAZHQHG5eZ1FH8VoB0vtaAhHQKIU+7eVLSN1fZQoaAZHQHIGRI4EOiFoB0vYaAhHQKIVqstkFwF1fZQoaAZHQHA9CrksBhhoB0uTaAhHQKIVvGn4wh51fZQoaAZHQHLzcZ9/jKhoB0vLaAhHQKIWCsFMZgp1fZQoaAZHQHDNuirT6SFoB0uzaAhHQKIWHNMXaal1fZQoaAZHQG+tPDgqEvloB0uuaAhHQKIWNX+2mYV1fZQoaAZHQHCKHMlkYoBoB0u0aAhHQKIWX531SO11fZQoaAZHQHEx3AAQxvhoB0vDaAhHQKIWk73fygB1fZQoaAZHQHNd9v863iJoB0vbaAhHQKIWkmu1WsB1fZQoaAZHQHG1k9ECvHNoB0uuaAhHQKIWzBSDRMN1fZQoaAZHQHG5Cg5BC2NoB0u1aAhHQKIXBJr+Hah1fZQoaAZHQHCJNJrcj7hoB0uzaAhHQKIXOUHpr1x1fZQoaAZHQHGsbK3d9DxoB0ugaAhHQKIXP1GLDQ91fZQoaAZHQHCH9ld1MdtoB0vDaAhHQKIXrwYtQKt1fZQoaAZHQHIcdtygf2doB0vhaAhHQKIXvKZlWfd1fZQoaAZHQHCHSbDuSfVoB0ujaAhHQKIXz8x9G7V1fZQoaAZHQHCMf863iJhoB0u9aAhHQKIYEhN/OMV1fZQoaAZHQHD+b8FY+0RoB0uraAhHQKIYHXPqs2h1fZQoaAZHQHORU4R28qZoB0vJaAhHQKIYlai9Iwx1fZQoaAZHQHFbIatLcsVoB0u+aAhHQKIYkpG4I8h1fZQoaAZHQHE4xgRbr1NoB0uwaAhHQKIYneRgZ0l1fZQoaAZHQHKq7KJVKf5oB0u2aAhHQKIYsd3B55Z1fZQoaAZHQHHHHlCCz1NoB0vfaAhHQKIYyOd5IH11fZQoaAZHQHGBMFdLQHBoB0uVaAhHQKIZBz+3pfR1fZQoaAZHQHF7uGKyfL9oB0u9aAhHQKIZBWeYlY51fZQoaAZHQEaqQDmr8zhoB0tgaAhHQKIZOUlAu7J1fZQoaAZHQHP0QxvegthoB0u7aAhHQKIZP2M85jp1fZQoaAZHQHL2SdJ8OTdoB0u2aAhHQKIZZqesgdR1fZQoaAZHQGJ9tjCpFThoB03oA2gIR0CiGZkmplz2dX2UKGgGR0BuEjU/fO2RaAdLo2gIR0CiGbd9Ujs2dX2UKGgGR0BwjS4J/oaDaAdLpmgIR0CiGgV9Wp6ydX2UKGgGR0BxOAb4rSVoaAdL1mgIR0CiGjNGus90dX2UKGgGR0BymetPpIMCaAdL7GgIR0CiGmVea8YidX2UKGgGR0BwgfSBshxHaAdLq2gIR0CiGo9ic5KfdX2UKGgGR0BwsOP7vXsgaAdLu2gIR0CiGrZH3DekdX2UKGgGR0Bxo7vx6OYIaAdLw2gIR0CiGsknssxxdX2UKGgGR0ByW/gOz6acaAdLxmgIR0CiGvJyZKFqdX2UKGgGR0BxEVfReC04aAdLvGgIR0CiGyDYAbQ1dX2UKGgGR0By7d62OQyRaAdLmWgIR0CiG0c6FM7EdX2UKGgGR0ByTbKxLTQWaAdLyWgIR0CiG0NUOuq4dX2UKGgGR0ByWGMju8braAdL3mgIR0CiG0b7sOXmdX2UKGgGR0BxnXoyKvV3aAdLw2gIR0CiG15oPCl8dX2UKGgGR0BxwSgbp/wzaAdLl2gIR0CiG2DmbLEDdX2UKGgGR0B0G7T1CgK4aAdL1mgIR0CiG5HpSrHVdX2UKGgGR0Bx5lng5zYFaAdL22gIR0CiG7+HaewtdX2UKGgGR0BxgFAPd2xIaAdLqWgIR0CiG9RnezlcdX2UKGgGR0ByUChf0EowaAdLpGgIR0CiG++vhZQpdX2UKGgGR0Bxpyj4593KaAdLmGgIR0CiG/2lMyrQdX2UKGgGR0BwHs1zhgmaaAdLsWgIR0CiHGR4hUzbdX2UKGgGR0Bmts8YAKfGaAdN6ANoCEdAohzPFrEcbXV9lChoBkdAcgidyDIzWWgHS6FoCEdAohzvLcKw6nV9lChoBkdAcWLHMlkYoGgHS8BoCEdAohzzt9hJAnV9lChoBkdAcod9XLeQ+2gHS9BoCEdAohz6U5dWyXV9lChoBkdAcdfpu/Dcd2gHS7toCEdAoh010PpY93V9lChoBkdAckDsaKk2xmgHS8loCEdAoh02mR/3FnV9lChoBkdAcSg642CNCWgHS7xoCEdAoh03nyNGVnV9lChoBkdAcNI4L1EmY2gHS7NoCEdAoh04t6HCXXV9lChoBkdAceAUTcqOLmgHS5BoCEdAoh1Df3vhInV9lChoBkdAcYYFXJYDDGgHS6RoCEdAoh1GpjtojHV9lChoBkdAb/B2ys0YTGgHS5hoCEdAoh2EAR02cnV9lChoBkdAbrsCQLeANGgHS7VoCEdAoh3fVNHpbHV9lChoBkdAcrMviLl3hWgHS9toCEdAoh4ekBS1mnV9lChoBkdASDdKIznA7GgHS39oCEdAoh6OlQ/HHXVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 495,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36d15dfd5eb44039cc9b39b1d23244f6b181fc9e3858f121425befb98c671f32
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c62c4cb33636e19c6e5e0b3ae74ad92eafec35b77a50bd8d7a1ce0fd08c080e1
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (175 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 281.47774379687587, "std_reward": 28.409403127361518, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-06T16:16:00.301898"}
|