BenjaminOcampo
commited on
Commit
•
e7060e7
1
Parent(s):
277c8ec
Add model's weights
Browse files- README.md +170 -87
- config.json +27 -0
- model.pt +3 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +13 -0
- vocab.txt +0 -0
README.md
CHANGED
@@ -1,116 +1,199 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
datasets:
|
4 |
-
- ISHate
|
5 |
-
language:
|
6 |
-
- en
|
7 |
-
library_name: transformers
|
8 |
-
license: bsl-1.0
|
9 |
-
metrics:
|
10 |
-
- f1
|
11 |
-
- accuracy
|
12 |
-
tags:
|
13 |
-
- hate-speech-detection
|
14 |
-
- implicit-hate-speech
|
15 |
---
|
16 |
|
17 |
-
|
18 |
-
Analysis for Combating Hate Expressions" accepted at the 27th European
|
19 |
-
Conference on Artificial Intelligence: https://www.ecai2024.eu/calls/demos.
|
20 |
|
21 |
-
|
22 |
-
This model is a hate speech detector fine-tuned specifically for detecting
|
23 |
-
implicit hate speech. It is based on the paper "PEACE: Providing Explanations
|
24 |
-
and Analysis for Combating Hate Expressions" by Greta Damo, Nicolás Benjamín
|
25 |
-
Ocampo, Elena Cabrio, and Serena Villata, presented at the 27th European
|
26 |
-
Conference on Artificial Intelligence.
|
27 |
|
28 |
-
# Training Parameters and Experimental Info
|
29 |
-
The model was trained using the ISHate dataset, focusing on implicit data.
|
30 |
-
Training parameters included:
|
31 |
-
- Batch size: 32
|
32 |
-
- Weight decay: 0.01
|
33 |
-
- Epochs: 4
|
34 |
-
- Learning rate: 2e-5
|
35 |
|
36 |
-
For detailed information on the training process, please refer to the [model's
|
37 |
-
paper](https://aclanthology.org/2023.findings-emnlp.441/).
|
38 |
|
39 |
-
|
40 |
|
41 |
-
|
42 |
|
43 |
-
|
44 |
-
pip install transformers==4.30.2
|
45 |
-
```
|
46 |
|
47 |
-
This model was created using pytorch vanilla. In order to load it you have to use the following Model Class.
|
48 |
|
49 |
-
```python
|
50 |
-
class ContrastiveModel(nn.Module):
|
51 |
-
def __init__(self, model):
|
52 |
-
super(ContrastiveModel, self).__init__()
|
53 |
-
self.model = model
|
54 |
-
self.embedding_dim = model.config.hidden_size
|
55 |
-
self.fc = nn.Linear(self.embedding_dim, self.embedding_dim)
|
56 |
-
self.classifier = nn.Linear(self.embedding_dim, 2) # Classification layer
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
63 |
|
64 |
-
|
65 |
-
```
|
66 |
|
67 |
-
|
68 |
|
69 |
-
|
70 |
-
|
|
|
71 |
|
72 |
-
|
73 |
|
74 |
-
|
75 |
-
contrastive_model = ContrastiveModel(AutoModel.from_config(config))
|
76 |
-
tokenizer = AutoTokenizer.from_pretrained(repo_name)
|
77 |
-
```
|
78 |
|
79 |
-
|
80 |
|
81 |
-
|
82 |
-
model_tmp_file = hf_hub_download(repo_id=repo_name, filename="model.pt", token=read_token)
|
83 |
|
84 |
-
|
85 |
|
86 |
-
|
87 |
-
```
|
88 |
|
89 |
-
|
90 |
|
91 |
-
|
92 |
-
import torch
|
93 |
|
94 |
-
|
95 |
-
inputs = tokenizer(text, return_tensors="pt")
|
96 |
|
97 |
-
|
98 |
-
_, logits = contrastive_model(inputs["input_ids"], inputs["attention_mask"])
|
99 |
|
100 |
-
|
101 |
-
_, predicted_labels = torch.max(probabilities, dim=1)
|
102 |
-
```
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
-
# Evaluation Results
|
109 |
-
The model's performance was evaluated using standard metrics, including F1 score
|
110 |
-
and accuracy. For comprehensive evaluation results, refer to the linked paper.
|
111 |
|
112 |
-
Authors:
|
113 |
-
- [Greta Damo](https://grexit-d.github.io/damo.greta.github.io/)
|
114 |
-
- [Nicolás Benjamín Ocampo](https://www.nicolasbenjaminocampo.com/)
|
115 |
-
- [Elena Cabrio](https://www-sop.inria.fr/members/Elena.Cabrio/)
|
116 |
-
- [Serena Villata](https://webusers.i3s.unice.fr/~villata/Home.html)
|
|
|
1 |
---
|
2 |
+
language: en
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
|
5 |
+
# Model Card for BenjaminOcampo/model-contrastive-bert__trained-in-ishate__seed-0
|
|
|
|
|
6 |
|
7 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
10 |
|
11 |
+
## Model Details
|
12 |
|
13 |
+
### Model Description
|
14 |
|
15 |
+
<!-- Provide a longer summary of what this model is. -->
|
|
|
|
|
16 |
|
|
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
- **Developed by:** BenjaminOcampo
|
20 |
+
- **Shared by [optional]:** [More Information Needed]
|
21 |
+
- **Model type:** [More Information Needed]
|
22 |
+
- **Language(s) (NLP):** en
|
23 |
+
- **License:** [More Information Needed]
|
24 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
25 |
|
26 |
+
### Model Sources [optional]
|
|
|
27 |
|
28 |
+
<!-- Provide the basic links for the model. -->
|
29 |
|
30 |
+
- **Repository:** https://github.com/huggingface/huggingface_hub
|
31 |
+
- **Paper [optional]:** [More Information Needed]
|
32 |
+
- **Demo [optional]:** [More Information Needed]
|
33 |
|
34 |
+
## Uses
|
35 |
|
36 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
|
|
|
|
|
|
37 |
|
38 |
+
### Direct Use
|
39 |
|
40 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
|
|
41 |
|
42 |
+
[More Information Needed]
|
43 |
|
44 |
+
### Downstream Use [optional]
|
|
|
45 |
|
46 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
47 |
|
48 |
+
[More Information Needed]
|
|
|
49 |
|
50 |
+
### Out-of-Scope Use
|
|
|
51 |
|
52 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
|
|
53 |
|
54 |
+
[More Information Needed]
|
|
|
|
|
55 |
|
56 |
+
## Bias, Risks, and Limitations
|
57 |
+
|
58 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
59 |
+
|
60 |
+
[More Information Needed]
|
61 |
+
|
62 |
+
### Recommendations
|
63 |
+
|
64 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
65 |
+
|
66 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
67 |
+
|
68 |
+
### How to Get Started with the Model
|
69 |
+
|
70 |
+
Use the code below to get started with the model.
|
71 |
+
|
72 |
+
[More Information Needed]
|
73 |
+
|
74 |
+
## Training Details
|
75 |
+
|
76 |
+
### Training Data
|
77 |
+
|
78 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
79 |
+
|
80 |
+
[More Information Needed]
|
81 |
+
|
82 |
+
### Training Procedure
|
83 |
+
|
84 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
85 |
+
|
86 |
+
#### Preprocessing [optional]
|
87 |
+
|
88 |
+
[More Information Needed]
|
89 |
+
|
90 |
+
|
91 |
+
#### Training Hyperparameters
|
92 |
+
|
93 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
94 |
+
|
95 |
+
#### Speeds, Sizes, Times [optional]
|
96 |
+
|
97 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
98 |
+
|
99 |
+
[More Information Needed]
|
100 |
+
|
101 |
+
## Evaluation
|
102 |
+
|
103 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
104 |
+
|
105 |
+
### Testing Data, Factors & Metrics
|
106 |
+
|
107 |
+
#### Testing Data
|
108 |
+
|
109 |
+
<!-- This should link to a Data Card if possible. -->
|
110 |
+
|
111 |
+
[More Information Needed]
|
112 |
+
|
113 |
+
#### Factors
|
114 |
+
|
115 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
116 |
+
|
117 |
+
[More Information Needed]
|
118 |
+
|
119 |
+
#### Metrics
|
120 |
+
|
121 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
122 |
+
|
123 |
+
[More Information Needed]
|
124 |
+
|
125 |
+
### Results
|
126 |
+
|
127 |
+
[More Information Needed]
|
128 |
+
|
129 |
+
#### Summary
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
## Model Examination [optional]
|
134 |
+
|
135 |
+
<!-- Relevant interpretability work for the model goes here -->
|
136 |
+
|
137 |
+
[More Information Needed]
|
138 |
+
|
139 |
+
## Environmental Impact
|
140 |
+
|
141 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
142 |
+
|
143 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
144 |
+
|
145 |
+
- **Hardware Type:** [More Information Needed]
|
146 |
+
- **Hours used:** [More Information Needed]
|
147 |
+
- **Cloud Provider:** [More Information Needed]
|
148 |
+
- **Compute Region:** [More Information Needed]
|
149 |
+
- **Carbon Emitted:** [More Information Needed]
|
150 |
+
|
151 |
+
## Technical Specifications [optional]
|
152 |
+
|
153 |
+
### Model Architecture and Objective
|
154 |
+
|
155 |
+
[More Information Needed]
|
156 |
+
|
157 |
+
### Compute Infrastructure
|
158 |
+
|
159 |
+
[More Information Needed]
|
160 |
+
|
161 |
+
#### Hardware
|
162 |
+
|
163 |
+
[More Information Needed]
|
164 |
+
|
165 |
+
#### Software
|
166 |
+
|
167 |
+
[More Information Needed]
|
168 |
+
|
169 |
+
## Citation [optional]
|
170 |
+
|
171 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
172 |
+
|
173 |
+
**BibTeX:**
|
174 |
+
|
175 |
+
[More Information Needed]
|
176 |
+
|
177 |
+
**APA:**
|
178 |
+
|
179 |
+
[More Information Needed]
|
180 |
+
|
181 |
+
## Glossary [optional]
|
182 |
+
|
183 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
184 |
+
|
185 |
+
[More Information Needed]
|
186 |
+
|
187 |
+
## More Information [optional]
|
188 |
+
|
189 |
+
[More Information Needed]
|
190 |
+
|
191 |
+
## Model Card Authors [optional]
|
192 |
+
|
193 |
+
[More Information Needed]
|
194 |
+
|
195 |
+
## Model Card Contact
|
196 |
+
|
197 |
+
[More Information Needed]
|
198 |
|
|
|
|
|
|
|
199 |
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BenjaminOcampo/model-contrastive-bert__trained-in-ishate__seed-0",
|
3 |
+
"architectures": [
|
4 |
+
"ContrastiveModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"problem_type": "single_label_classification",
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.30.2",
|
24 |
+
"type_vocab_size": 2,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 30522
|
27 |
+
}
|
model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70144a50148a804b3666d2e3e46677cb07dc8e629b26259f5f233a59d09a449c
|
3 |
+
size 440370701
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5121bd30cbf09d873822dc0305e50c848ca242a4b674227f9603ab1397ea4237
|
3 |
+
size 440368698
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"clean_up_tokenization_spaces": true,
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_lower_case": true,
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"model_max_length": 512,
|
7 |
+
"pad_token": "[PAD]",
|
8 |
+
"sep_token": "[SEP]",
|
9 |
+
"strip_accents": null,
|
10 |
+
"tokenize_chinese_chars": true,
|
11 |
+
"tokenizer_class": "BertTokenizer",
|
12 |
+
"unk_token": "[UNK]"
|
13 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|