Benjamin Bossan
commited on
Commit
·
0598e08
1
Parent(s):
d747363
A simple logistic regression model
Browse files- Update README.md (incl. model card)
- Add training script
- Add model artifact
- .gitattributes +2 -0
- README.md +31 -0
- model.pickle +3 -0
- requirements.txt +1 -0
- train.py +65 -0
.gitattributes
CHANGED
@@ -13,6 +13,8 @@
|
|
13 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
14 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
15 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
16 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
17 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
18 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
|
|
13 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
14 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
15 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
18 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
19 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
20 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,34 @@
|
|
1 |
---
|
2 |
license: bsd-3-clause
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: bsd-3-clause
|
3 |
+
tags:
|
4 |
+
- sklearn
|
5 |
+
datasets:
|
6 |
+
- synthetic dataset from sklearn
|
7 |
+
metrics:
|
8 |
+
- type: accuracy
|
9 |
+
value: 0.948
|
10 |
---
|
11 |
+
|
12 |
+
# Simple example using plain scikit-learn
|
13 |
+
|
14 |
+
## Reproducing the model
|
15 |
+
|
16 |
+
Inside a Python environment, install the dependencies listed in `requirements.txt` and then run:
|
17 |
+
|
18 |
+
``` bash
|
19 |
+
python train.py
|
20 |
+
```
|
21 |
+
|
22 |
+
The resulting model artifact should be stored in `model.pickle`.
|
23 |
+
|
24 |
+
## The model
|
25 |
+
|
26 |
+
The used model is a simple logistic regression trained through gradient descent.
|
27 |
+
|
28 |
+
## Intended use & limitations
|
29 |
+
|
30 |
+
This model is just for demonstration purposes and should thus not be used.
|
31 |
+
|
32 |
+
## Dataset
|
33 |
+
|
34 |
+
The dataset is entirely synthetic and has no real world origin.
|
model.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49024e6163c30049244412395379a7189646f0080a9368d2c92f7ef6cfb3041e
|
3 |
+
size 1112
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
scikit-learn==1.0.1
|
train.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Script to create the model artifact
|
2 |
+
|
3 |
+
Trains a simple logistic regression with grid search on a synthetic dataset and
|
4 |
+
stores the model in a pickle file.
|
5 |
+
|
6 |
+
"""
|
7 |
+
|
8 |
+
import pickle
|
9 |
+
|
10 |
+
from sklearn.datasets import make_classification
|
11 |
+
from sklearn.linear_model import SGDClassifier
|
12 |
+
from sklearn.model_selection import GridSearchCV
|
13 |
+
|
14 |
+
|
15 |
+
SEED = 0
|
16 |
+
|
17 |
+
|
18 |
+
def get_data():
|
19 |
+
X, y = make_classification(n_samples=1000, random_state=SEED)
|
20 |
+
return X, y
|
21 |
+
|
22 |
+
|
23 |
+
def get_model(**kwargs):
|
24 |
+
model = SGDClassifier(random_state=SEED)
|
25 |
+
model.set_params(**kwargs)
|
26 |
+
return model
|
27 |
+
|
28 |
+
|
29 |
+
def get_hparams():
|
30 |
+
hparams = {
|
31 |
+
'penalty': ['l1', 'l2'],
|
32 |
+
'alpha': [0.00001, 0.0001, 0.001],
|
33 |
+
}
|
34 |
+
return hparams
|
35 |
+
|
36 |
+
|
37 |
+
def grid_search(model, X, y, hparams):
|
38 |
+
search = GridSearchCV(model, hparams, cv=5, scoring='accuracy')
|
39 |
+
search.fit(X, y)
|
40 |
+
return search
|
41 |
+
|
42 |
+
|
43 |
+
def train(model, X, y, hparams):
|
44 |
+
search = grid_search(model, X, y, hparams=hparams)
|
45 |
+
print(f"Best accuracy: {100 * search.best_score_:.1f}%")
|
46 |
+
print(f"Best parameters: {search.best_params_}")
|
47 |
+
return search.best_estimator_
|
48 |
+
|
49 |
+
|
50 |
+
def save_model(model, filename):
|
51 |
+
with open(filename, 'wb') as f:
|
52 |
+
pickle.dump(model, f)
|
53 |
+
print(f"Stored model in '{filename}'")
|
54 |
+
|
55 |
+
|
56 |
+
def main():
|
57 |
+
X, y = get_data()
|
58 |
+
model = get_model()
|
59 |
+
hparams = get_hparams()
|
60 |
+
model_trained = train(model, X, y, hparams=hparams)
|
61 |
+
save_model(model_trained, 'model.pickle')
|
62 |
+
|
63 |
+
|
64 |
+
if __name__ == '__main__':
|
65 |
+
main()
|