Benedict-L commited on
Commit
b9311e0
1 Parent(s): a23f23b

End of training

Browse files
README.md CHANGED
@@ -17,14 +17,14 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.6751
21
- - Answer: {'precision': 0.6893617021276596, 'recall': 0.8009888751545118, 'f1': 0.7409948542024015, 'number': 809}
22
- - Header: {'precision': 0.29, 'recall': 0.24369747899159663, 'f1': 0.2648401826484018, 'number': 119}
23
- - Question: {'precision': 0.7557840616966581, 'recall': 0.828169014084507, 'f1': 0.7903225806451614, 'number': 1065}
24
- - Overall Precision: 0.7064
25
- - Overall Recall: 0.7822
26
- - Overall F1: 0.7424
27
- - Overall Accuracy: 0.8022
28
 
29
  ## Model description
30
 
@@ -43,40 +43,60 @@ More information needed
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
- - learning_rate: 3e-05
47
  - train_batch_size: 16
48
  - eval_batch_size: 8
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
  - lr_scheduler_warmup_steps: 500
53
- - num_epochs: 20
54
  - mixed_precision_training: Native AMP
55
 
56
  ### Training results
57
 
58
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
59
- |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
60
- | 2.0338 | 1.0 | 10 | 2.0357 | {'precision': 0.037227214377406934, 'recall': 0.03584672435105068, 'f1': 0.03652392947103275, 'number': 809} | {'precision': 0.004568527918781726, 'recall': 0.15126050420168066, 'f1': 0.008869179600886918, 'number': 119} | {'precision': 0.052884615384615384, 'recall': 0.15492957746478872, 'f1': 0.07885304659498207, 'number': 1065} | 0.0270 | 0.1064 | 0.0431 | 0.0892 |
61
- | 2.0223 | 2.0 | 20 | 2.0181 | {'precision': 0.03938730853391685, 'recall': 0.04449938195302843, 'f1': 0.04178757980266977, 'number': 809} | {'precision': 0.004824063564131668, 'recall': 0.14285714285714285, 'f1': 0.009332967334614329, 'number': 119} | {'precision': 0.05484848484848485, 'recall': 0.1699530516431925, 'f1': 0.08293241695303552, 'number': 1065} | 0.0302 | 0.1174 | 0.0481 | 0.1005 |
62
- | 1.9986 | 3.0 | 30 | 1.9858 | {'precision': 0.04096989966555184, 'recall': 0.06056860321384425, 'f1': 0.048877805486284294, 'number': 809} | {'precision': 0.004677941705649514, 'recall': 0.1092436974789916, 'f1': 0.008971704623878536, 'number': 119} | {'precision': 0.05835468260745801, 'recall': 0.19248826291079812, 'f1': 0.08955875928352992, 'number': 1065} | 0.0357 | 0.1340 | 0.0563 | 0.1256 |
63
- | 1.9605 | 4.0 | 40 | 1.9419 | {'precision': 0.03710462287104623, 'recall': 0.0754017305315204, 'f1': 0.04973501834488382, 'number': 809} | {'precision': 0.006282124500285551, 'recall': 0.09243697478991597, 'f1': 0.011764705882352943, 'number': 119} | {'precision': 0.06151288445552785, 'recall': 0.2084507042253521, 'f1': 0.09499358151476253, 'number': 1065} | 0.0420 | 0.1475 | 0.0654 | 0.1633 |
64
- | 1.9119 | 5.0 | 50 | 1.8881 | {'precision': 0.03694581280788178, 'recall': 0.09270704573547589, 'f1': 0.0528355054596689, 'number': 809} | {'precision': 0.002574002574002574, 'recall': 0.01680672268907563, 'f1': 0.004464285714285714, 'number': 119} | {'precision': 0.0671203216826477, 'recall': 0.20375586854460093, 'f1': 0.10097719869706841, 'number': 1065} | 0.0487 | 0.1475 | 0.0732 | 0.2224 |
65
- | 1.8502 | 6.0 | 60 | 1.8264 | {'precision': 0.03467062902426944, 'recall': 0.0865265760197775, 'f1': 0.04950495049504951, 'number': 809} | {'precision': 0.010101010101010102, 'recall': 0.01680672268907563, 'f1': 0.012618296529968456, 'number': 119} | {'precision': 0.08910070451719851, 'recall': 0.20187793427230047, 'f1': 0.1236342725704428, 'number': 1065} | 0.0620 | 0.1440 | 0.0867 | 0.2866 |
66
- | 1.7869 | 7.0 | 70 | 1.7587 | {'precision': 0.026297085998578537, 'recall': 0.04573547589616811, 'f1': 0.033393501805054154, 'number': 809} | {'precision': 0.05555555555555555, 'recall': 0.008403361344537815, 'f1': 0.014598540145985401, 'number': 119} | {'precision': 0.13085399449035812, 'recall': 0.1784037558685446, 'f1': 0.15097338100913787, 'number': 1065} | 0.0792 | 0.1144 | 0.0936 | 0.3296 |
67
- | 1.7064 | 8.0 | 80 | 1.6779 | {'precision': 0.018147086914995225, 'recall': 0.023485784919653894, 'f1': 0.020474137931034486, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.18514946962391515, 'recall': 0.18028169014084508, 'f1': 0.18268315889628925, 'number': 1065} | 0.1011 | 0.1059 | 0.1034 | 0.3535 |
68
- | 1.6169 | 9.0 | 90 | 1.5857 | {'precision': 0.03464419475655431, 'recall': 0.04573547589616811, 'f1': 0.03942461374533831, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2270450751252087, 'recall': 0.25539906103286386, 'f1': 0.2403888643393725, 'number': 1065} | 0.1364 | 0.1550 | 0.1451 | 0.3995 |
69
- | 1.5331 | 10.0 | 100 | 1.4740 | {'precision': 0.06180344478216818, 'recall': 0.0754017305315204, 'f1': 0.06792873051224943, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.3259207783182766, 'recall': 0.4403755868544601, 'f1': 0.3746006389776358, 'number': 1065} | 0.2185 | 0.2659 | 0.2399 | 0.4731 |
70
- | 1.3817 | 11.0 | 110 | 1.3317 | {'precision': 0.1468609865470852, 'recall': 0.1619283065512979, 'f1': 0.1540270429159318, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.42608089260808923, 'recall': 0.5737089201877934, 'f1': 0.48899559823929567, 'number': 1065} | 0.3190 | 0.3723 | 0.3436 | 0.5459 |
71
- | 1.2192 | 12.0 | 120 | 1.1630 | {'precision': 0.2839506172839506, 'recall': 0.2843016069221261, 'f1': 0.28412600370599134, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5201238390092879, 'recall': 0.6309859154929578, 'f1': 0.5702163767501062, 'number': 1065} | 0.4283 | 0.4526 | 0.4401 | 0.6106 |
72
- | 1.068 | 13.0 | 130 | 1.0176 | {'precision': 0.41460905349794236, 'recall': 0.49814585908529047, 'f1': 0.45255474452554745, 'number': 809} | {'precision': 0.05263157894736842, 'recall': 0.008403361344537815, 'f1': 0.014492753623188406, 'number': 119} | {'precision': 0.54477050413845, 'recall': 0.67981220657277, 'f1': 0.6048454469507102, 'number': 1065} | 0.4862 | 0.5660 | 0.5231 | 0.6807 |
73
- | 0.901 | 14.0 | 140 | 0.9007 | {'precision': 0.484472049689441, 'recall': 0.5784919653893696, 'f1': 0.5273239436619719, 'number': 809} | {'precision': 0.023255813953488372, 'recall': 0.008403361344537815, 'f1': 0.01234567901234568, 'number': 119} | {'precision': 0.6263463131731566, 'recall': 0.7098591549295775, 'f1': 0.665492957746479, 'number': 1065} | 0.5528 | 0.6147 | 0.5821 | 0.7168 |
74
- | 0.7884 | 15.0 | 150 | 0.8050 | {'precision': 0.5395833333333333, 'recall': 0.6402966625463535, 'f1': 0.5856416054267948, 'number': 809} | {'precision': 0.11940298507462686, 'recall': 0.06722689075630252, 'f1': 0.08602150537634408, 'number': 119} | {'precision': 0.6304176516942475, 'recall': 0.7511737089201878, 'f1': 0.6855184233076264, 'number': 1065} | 0.5775 | 0.6653 | 0.6183 | 0.7537 |
75
- | 0.7027 | 16.0 | 160 | 0.7470 | {'precision': 0.6069246435845214, 'recall': 0.7367119901112484, 'f1': 0.6655499720826354, 'number': 809} | {'precision': 0.2236842105263158, 'recall': 0.14285714285714285, 'f1': 0.17435897435897438, 'number': 119} | {'precision': 0.6496465043205027, 'recall': 0.7765258215962442, 'f1': 0.7074422583404619, 'number': 1065} | 0.6178 | 0.7225 | 0.6660 | 0.7717 |
76
- | 0.6177 | 17.0 | 170 | 0.7266 | {'precision': 0.6294691224268689, 'recall': 0.7181705809641533, 'f1': 0.6709006928406466, 'number': 809} | {'precision': 0.2777777777777778, 'recall': 0.16806722689075632, 'f1': 0.20942408376963353, 'number': 119} | {'precision': 0.6956875508543532, 'recall': 0.8028169014084507, 'f1': 0.7454228421970358, 'number': 1065} | 0.6547 | 0.7306 | 0.6905 | 0.7750 |
77
- | 0.5539 | 18.0 | 180 | 0.6824 | {'precision': 0.6402805611222445, 'recall': 0.7898640296662547, 'f1': 0.7072495849474266, 'number': 809} | {'precision': 0.27710843373493976, 'recall': 0.19327731092436976, 'f1': 0.22772277227722776, 'number': 119} | {'precision': 0.7141687141687142, 'recall': 0.8187793427230047, 'f1': 0.762904636920385, 'number': 1065} | 0.6664 | 0.7697 | 0.7143 | 0.7913 |
78
- | 0.499 | 19.0 | 190 | 0.6764 | {'precision': 0.6718266253869969, 'recall': 0.8046971569839307, 'f1': 0.732283464566929, 'number': 809} | {'precision': 0.3068181818181818, 'recall': 0.226890756302521, 'f1': 0.2608695652173913, 'number': 119} | {'precision': 0.7504378283712785, 'recall': 0.8046948356807512, 'f1': 0.7766198459447213, 'number': 1065} | 0.6980 | 0.7702 | 0.7323 | 0.7961 |
79
- | 0.4355 | 20.0 | 200 | 0.6751 | {'precision': 0.6893617021276596, 'recall': 0.8009888751545118, 'f1': 0.7409948542024015, 'number': 809} | {'precision': 0.29, 'recall': 0.24369747899159663, 'f1': 0.2648401826484018, 'number': 119} | {'precision': 0.7557840616966581, 'recall': 0.828169014084507, 'f1': 0.7903225806451614, 'number': 1065} | 0.7064 | 0.7822 | 0.7424 | 0.8022 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
 
81
 
82
  ### Framework versions
 
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.8917
21
+ - Answer: {'precision': 0.7259507829977628, 'recall': 0.8022249690976514, 'f1': 0.7621843805049912, 'number': 809}
22
+ - Header: {'precision': 0.3355263157894737, 'recall': 0.42857142857142855, 'f1': 0.3763837638376384, 'number': 119}
23
+ - Question: {'precision': 0.7875, 'recall': 0.828169014084507, 'f1': 0.8073226544622427, 'number': 1065}
24
+ - Overall Precision: 0.7304
25
+ - Overall Recall: 0.7938
26
+ - Overall F1: 0.7608
27
+ - Overall Accuracy: 0.7919
28
 
29
  ## Model description
30
 
 
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
  - train_batch_size: 16
48
  - eval_batch_size: 8
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
  - lr_scheduler_warmup_steps: 500
53
+ - num_epochs: 40
54
  - mixed_precision_training: Native AMP
55
 
56
  ### Training results
57
 
58
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
59
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
60
+ | 1.9148 | 1.0 | 10 | 1.9348 | {'precision': 0.02721922511034821, 'recall': 0.13720642768850433, 'f1': 0.04542664211172499, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.040596094552929084, 'recall': 0.07417840375586854, 'f1': 0.0524742610428429, 'number': 1065} | 0.0308 | 0.0953 | 0.0466 | 0.1513 |
61
+ | 1.9105 | 2.0 | 20 | 1.9240 | {'precision': 0.02663934426229508, 'recall': 0.12855377008652658, 'f1': 0.04413324846170167, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.04175152749490835, 'recall': 0.07699530516431925, 'f1': 0.05414328161109277, 'number': 1065} | 0.0310 | 0.0933 | 0.0466 | 0.1596 |
62
+ | 1.8962 | 3.0 | 30 | 1.9059 | {'precision': 0.025634033269702754, 'recall': 0.1161928306551298, 'f1': 0.0420017873100983, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.04310344827586207, 'recall': 0.07981220657276995, 'f1': 0.05597629239380968, 'number': 1065} | 0.0312 | 0.0898 | 0.0464 | 0.1729 |
63
+ | 1.8763 | 4.0 | 40 | 1.8818 | {'precision': 0.025390027531355153, 'recall': 0.10259579728059333, 'f1': 0.04070622854340363, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.04250907205806117, 'recall': 0.07699530516431925, 'f1': 0.05477621910487642, 'number': 1065} | 0.0314 | 0.0828 | 0.0456 | 0.1906 |
64
+ | 1.8461 | 5.0 | 50 | 1.8523 | {'precision': 0.026613197229310975, 'recall': 0.09023485784919653, 'f1': 0.0411036036036036, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.04662643993417444, 'recall': 0.07981220657276995, 'f1': 0.05886426592797784, 'number': 1065} | 0.0344 | 0.0793 | 0.0480 | 0.2194 |
65
+ | 1.816 | 6.0 | 60 | 1.8190 | {'precision': 0.027329749103942653, 'recall': 0.0754017305315204, 'f1': 0.04011838211114765, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.05275779376498801, 'recall': 0.08262910798122065, 'f1': 0.06439809732894256, 'number': 1065} | 0.0381 | 0.0748 | 0.0505 | 0.2467 |
66
+ | 1.7864 | 7.0 | 70 | 1.7834 | {'precision': 0.022129186602870814, 'recall': 0.04573547589616811, 'f1': 0.029826682789197905, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.06278026905829596, 'recall': 0.07887323943661972, 'f1': 0.06991260923845194, 'number': 1065} | 0.0402 | 0.0607 | 0.0484 | 0.2767 |
67
+ | 1.7409 | 8.0 | 80 | 1.7413 | {'precision': 0.024390243902439025, 'recall': 0.038318912237330034, 'f1': 0.029807692307692306, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.07393715341959335, 'recall': 0.07511737089201878, 'f1': 0.07452258965999067, 'number': 1065} | 0.0471 | 0.0557 | 0.0511 | 0.2975 |
68
+ | 1.6984 | 9.0 | 90 | 1.6959 | {'precision': 0.01787487586891758, 'recall': 0.022249690976514216, 'f1': 0.019823788546255508, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.10549943883277217, 'recall': 0.08826291079812207, 'f1': 0.09611451942740287, 'number': 1065} | 0.0590 | 0.0562 | 0.0576 | 0.3175 |
69
+ | 1.6582 | 10.0 | 100 | 1.6434 | {'precision': 0.02877697841726619, 'recall': 0.034610630407911, 'f1': 0.031425364758698095, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.1774033696729435, 'recall': 0.168075117370892, 'f1': 0.1726133076181292, 'number': 1065} | 0.1044 | 0.1039 | 0.1042 | 0.3466 |
70
+ | 1.5875 | 11.0 | 110 | 1.5763 | {'precision': 0.04632152588555858, 'recall': 0.0630407911001236, 'f1': 0.05340314136125654, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.23351023502653526, 'recall': 0.2892018779342723, 'f1': 0.25838926174496646, 'number': 1065} | 0.1483 | 0.1801 | 0.1627 | 0.4021 |
71
+ | 1.513 | 12.0 | 120 | 1.4936 | {'precision': 0.06457739791073125, 'recall': 0.08405438813349815, 'f1': 0.07303974221267456, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.29396325459317585, 'recall': 0.42065727699530514, 'f1': 0.3460795674005407, 'number': 1065} | 0.2002 | 0.2589 | 0.2258 | 0.4569 |
72
+ | 1.425 | 13.0 | 130 | 1.3967 | {'precision': 0.08278867102396514, 'recall': 0.09394313967861558, 'f1': 0.08801389693109439, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.36175882744836774, 'recall': 0.5098591549295775, 'f1': 0.4232268121590023, 'number': 1065} | 0.2559 | 0.3106 | 0.2806 | 0.4954 |
73
+ | 1.2919 | 14.0 | 140 | 1.2813 | {'precision': 0.14430379746835442, 'recall': 0.14091470951792337, 'f1': 0.1425891181988743, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4328882642304989, 'recall': 0.5784037558685446, 'f1': 0.4951768488745981, 'number': 1065} | 0.3299 | 0.3663 | 0.3471 | 0.5484 |
74
+ | 1.187 | 15.0 | 150 | 1.1608 | {'precision': 0.24360699865410498, 'recall': 0.22373300370828184, 'f1': 0.23324742268041238, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5067567567567568, 'recall': 0.6338028169014085, 'f1': 0.5632040050062578, 'number': 1065} | 0.4125 | 0.4295 | 0.4208 | 0.5971 |
75
+ | 1.0614 | 16.0 | 160 | 1.0322 | {'precision': 0.3975609756097561, 'recall': 0.40296662546353523, 'f1': 0.40024554941682017, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5522949586155004, 'recall': 0.6892018779342723, 'f1': 0.6131996658312447, 'number': 1065} | 0.4921 | 0.5319 | 0.5112 | 0.6638 |
76
+ | 0.9293 | 17.0 | 170 | 0.9263 | {'precision': 0.5032537960954447, 'recall': 0.5735475896168108, 'f1': 0.5361062969381861, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5963302752293578, 'recall': 0.7323943661971831, 'f1': 0.6573957016434893, 'number': 1065} | 0.5531 | 0.6242 | 0.5865 | 0.7108 |
77
+ | 0.8159 | 18.0 | 180 | 0.8344 | {'precision': 0.5733610822060354, 'recall': 0.681087762669963, 'f1': 0.6225988700564972, 'number': 809} | {'precision': 0.08, 'recall': 0.03361344537815126, 'f1': 0.047337278106508875, 'number': 119} | {'precision': 0.6435483870967742, 'recall': 0.7492957746478873, 'f1': 0.6924078091106292, 'number': 1065} | 0.6011 | 0.6789 | 0.6376 | 0.7407 |
78
+ | 0.7244 | 19.0 | 190 | 0.7626 | {'precision': 0.6211312700106724, 'recall': 0.7194066749072929, 'f1': 0.6666666666666666, 'number': 809} | {'precision': 0.18867924528301888, 'recall': 0.08403361344537816, 'f1': 0.11627906976744187, 'number': 119} | {'precision': 0.6724422442244224, 'recall': 0.7652582159624414, 'f1': 0.7158541941150638, 'number': 1065} | 0.6390 | 0.7060 | 0.6708 | 0.7603 |
79
+ | 0.6506 | 20.0 | 200 | 0.7306 | {'precision': 0.6355748373101953, 'recall': 0.7243510506798516, 'f1': 0.6770652801848642, 'number': 809} | {'precision': 0.2222222222222222, 'recall': 0.15126050420168066, 'f1': 0.18, 'number': 119} | {'precision': 0.66953125, 'recall': 0.8046948356807512, 'f1': 0.7309168443496802, 'number': 1065} | 0.6399 | 0.7331 | 0.6833 | 0.7771 |
80
+ | 0.588 | 21.0 | 210 | 0.6980 | {'precision': 0.6449197860962567, 'recall': 0.7453646477132262, 'f1': 0.6915137614678899, 'number': 809} | {'precision': 0.22340425531914893, 'recall': 0.17647058823529413, 'f1': 0.1971830985915493, 'number': 119} | {'precision': 0.6994171523730225, 'recall': 0.7887323943661971, 'f1': 0.7413945278022949, 'number': 1065} | 0.6565 | 0.7346 | 0.6933 | 0.7812 |
81
+ | 0.552 | 22.0 | 220 | 0.6761 | {'precision': 0.6673819742489271, 'recall': 0.7688504326328801, 'f1': 0.7145318782309018, 'number': 809} | {'precision': 0.22330097087378642, 'recall': 0.19327731092436976, 'f1': 0.20720720720720723, 'number': 119} | {'precision': 0.713469387755102, 'recall': 0.8206572769953052, 'f1': 0.7633187772925764, 'number': 1065} | 0.6721 | 0.7622 | 0.7143 | 0.7907 |
82
+ | 0.4842 | 23.0 | 230 | 0.6748 | {'precision': 0.6846846846846847, 'recall': 0.7515451174289246, 'f1': 0.7165586328815557, 'number': 809} | {'precision': 0.25961538461538464, 'recall': 0.226890756302521, 'f1': 0.242152466367713, 'number': 119} | {'precision': 0.7347789824854045, 'recall': 0.8272300469483568, 'f1': 0.7782685512367491, 'number': 1065} | 0.6919 | 0.7607 | 0.7247 | 0.7955 |
83
+ | 0.4503 | 24.0 | 240 | 0.6768 | {'precision': 0.6757322175732218, 'recall': 0.7985166872682324, 'f1': 0.7320113314447593, 'number': 809} | {'precision': 0.26732673267326734, 'recall': 0.226890756302521, 'f1': 0.24545454545454548, 'number': 119} | {'precision': 0.7468460891505467, 'recall': 0.8338028169014085, 'f1': 0.7879325643300797, 'number': 1065} | 0.6950 | 0.7832 | 0.7365 | 0.7949 |
84
+ | 0.4104 | 25.0 | 250 | 0.6905 | {'precision': 0.6844444444444444, 'recall': 0.761433868974042, 'f1': 0.7208894090111176, 'number': 809} | {'precision': 0.2689075630252101, 'recall': 0.2689075630252101, 'f1': 0.2689075630252101, 'number': 119} | {'precision': 0.7474747474747475, 'recall': 0.8338028169014085, 'f1': 0.788282290279627, 'number': 1065} | 0.6960 | 0.7707 | 0.7314 | 0.7921 |
85
+ | 0.3846 | 26.0 | 260 | 0.6857 | {'precision': 0.6980920314253648, 'recall': 0.7688504326328801, 'f1': 0.731764705882353, 'number': 809} | {'precision': 0.2773109243697479, 'recall': 0.2773109243697479, 'f1': 0.2773109243697479, 'number': 119} | {'precision': 0.7468566638725901, 'recall': 0.8366197183098592, 'f1': 0.7891939769707705, 'number': 1065} | 0.7018 | 0.7757 | 0.7369 | 0.7966 |
86
+ | 0.3533 | 27.0 | 270 | 0.6714 | {'precision': 0.6938997821350763, 'recall': 0.7873918417799752, 'f1': 0.7376954255935148, 'number': 809} | {'precision': 0.2767857142857143, 'recall': 0.2605042016806723, 'f1': 0.2683982683982684, 'number': 119} | {'precision': 0.7580645161290323, 'recall': 0.8384976525821596, 'f1': 0.7962550156041017, 'number': 1065} | 0.7070 | 0.7832 | 0.7432 | 0.7971 |
87
+ | 0.3271 | 28.0 | 280 | 0.7090 | {'precision': 0.6864035087719298, 'recall': 0.7737948084054388, 'f1': 0.7274840209180709, 'number': 809} | {'precision': 0.2706766917293233, 'recall': 0.3025210084033613, 'f1': 0.28571428571428564, 'number': 119} | {'precision': 0.7462562396006656, 'recall': 0.8422535211267606, 'f1': 0.7913542126157919, 'number': 1065} | 0.6938 | 0.7822 | 0.7354 | 0.7929 |
88
+ | 0.3031 | 29.0 | 290 | 0.7212 | {'precision': 0.7275943396226415, 'recall': 0.7626699629171817, 'f1': 0.7447193723596861, 'number': 809} | {'precision': 0.3130434782608696, 'recall': 0.3025210084033613, 'f1': 0.3076923076923077, 'number': 119} | {'precision': 0.7788546255506608, 'recall': 0.8300469483568075, 'f1': 0.8036363636363637, 'number': 1065} | 0.7326 | 0.7712 | 0.7514 | 0.7949 |
89
+ | 0.2723 | 30.0 | 300 | 0.7351 | {'precision': 0.7036637931034483, 'recall': 0.8071693448702101, 'f1': 0.7518710420264824, 'number': 809} | {'precision': 0.2740740740740741, 'recall': 0.31092436974789917, 'f1': 0.29133858267716534, 'number': 119} | {'precision': 0.7715289982425307, 'recall': 0.8244131455399061, 'f1': 0.7970948706309579, 'number': 1065} | 0.7124 | 0.7868 | 0.7477 | 0.7982 |
90
+ | 0.2589 | 31.0 | 310 | 0.7356 | {'precision': 0.6878914405010439, 'recall': 0.8145859085290482, 'f1': 0.745897000565931, 'number': 809} | {'precision': 0.30973451327433627, 'recall': 0.29411764705882354, 'f1': 0.3017241379310345, 'number': 119} | {'precision': 0.7708688245315162, 'recall': 0.8497652582159625, 'f1': 0.8083966056275124, 'number': 1065} | 0.7122 | 0.8023 | 0.7546 | 0.7948 |
91
+ | 0.2305 | 32.0 | 320 | 0.7378 | {'precision': 0.7220956719817767, 'recall': 0.7836835599505563, 'f1': 0.7516301126259632, 'number': 809} | {'precision': 0.32432432432432434, 'recall': 0.3025210084033613, 'f1': 0.31304347826086953, 'number': 119} | {'precision': 0.7734711455641688, 'recall': 0.8431924882629108, 'f1': 0.8068283917340521, 'number': 1065} | 0.7293 | 0.7868 | 0.7569 | 0.7983 |
92
+ | 0.2114 | 33.0 | 330 | 0.7546 | {'precision': 0.7093275488069414, 'recall': 0.8084054388133498, 'f1': 0.7556325823223571, 'number': 809} | {'precision': 0.3392857142857143, 'recall': 0.31932773109243695, 'f1': 0.32900432900432897, 'number': 119} | {'precision': 0.7737162750217581, 'recall': 0.8347417840375587, 'f1': 0.803071364046974, 'number': 1065} | 0.7242 | 0.7933 | 0.7572 | 0.7987 |
93
+ | 0.1921 | 34.0 | 340 | 0.7701 | {'precision': 0.724669603524229, 'recall': 0.8133498145859085, 'f1': 0.7664531158998252, 'number': 809} | {'precision': 0.2980132450331126, 'recall': 0.37815126050420167, 'f1': 0.33333333333333337, 'number': 119} | {'precision': 0.7862939585211902, 'recall': 0.8187793427230047, 'f1': 0.8022079116835327, 'number': 1065} | 0.7265 | 0.7903 | 0.7570 | 0.7991 |
94
+ | 0.1791 | 35.0 | 350 | 0.8101 | {'precision': 0.7331812998859749, 'recall': 0.7948084054388134, 'f1': 0.7627520759193357, 'number': 809} | {'precision': 0.31724137931034485, 'recall': 0.3865546218487395, 'f1': 0.3484848484848485, 'number': 119} | {'precision': 0.7892416225749559, 'recall': 0.8403755868544601, 'f1': 0.814006366530241, 'number': 1065} | 0.7347 | 0.7948 | 0.7636 | 0.7955 |
95
+ | 0.1607 | 36.0 | 360 | 0.7987 | {'precision': 0.7369020501138952, 'recall': 0.799752781211372, 'f1': 0.7670420865441612, 'number': 809} | {'precision': 0.31690140845070425, 'recall': 0.37815126050420167, 'f1': 0.3448275862068965, 'number': 119} | {'precision': 0.784121320249777, 'recall': 0.8253521126760563, 'f1': 0.8042086001829827, 'number': 1065} | 0.7338 | 0.7883 | 0.7600 | 0.8035 |
96
+ | 0.145 | 37.0 | 370 | 0.8154 | {'precision': 0.7079741379310345, 'recall': 0.8121137206427689, 'f1': 0.7564766839378237, 'number': 809} | {'precision': 0.3248407643312102, 'recall': 0.42857142857142855, 'f1': 0.3695652173913043, 'number': 119} | {'precision': 0.7934782608695652, 'recall': 0.8225352112676056, 'f1': 0.8077455048409405, 'number': 1065} | 0.7236 | 0.7948 | 0.7575 | 0.8013 |
97
+ | 0.139 | 38.0 | 380 | 0.8250 | {'precision': 0.7334083239595051, 'recall': 0.8059332509270705, 'f1': 0.767962308598351, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.4117647058823529, 'f1': 0.36842105263157887, 'number': 119} | {'precision': 0.7953110910730388, 'recall': 0.828169014084507, 'f1': 0.8114075436982521, 'number': 1065} | 0.7380 | 0.7943 | 0.7651 | 0.8062 |
98
+ | 0.1266 | 39.0 | 390 | 0.8796 | {'precision': 0.762962962962963, 'recall': 0.7639060568603214, 'f1': 0.7634342186534898, 'number': 809} | {'precision': 0.34591194968553457, 'recall': 0.46218487394957986, 'f1': 0.39568345323741, 'number': 119} | {'precision': 0.7884267631103075, 'recall': 0.8187793427230047, 'f1': 0.8033164440350069, 'number': 1065} | 0.7446 | 0.7752 | 0.7596 | 0.7989 |
99
+ | 0.1147 | 40.0 | 400 | 0.8917 | {'precision': 0.7259507829977628, 'recall': 0.8022249690976514, 'f1': 0.7621843805049912, 'number': 809} | {'precision': 0.3355263157894737, 'recall': 0.42857142857142855, 'f1': 0.3763837638376384, 'number': 119} | {'precision': 0.7875, 'recall': 0.828169014084507, 'f1': 0.8073226544622427, 'number': 1065} | 0.7304 | 0.7938 | 0.7608 | 0.7919 |
100
 
101
 
102
  ### Framework versions
logs/events.out.tfevents.1718875681.HCIDC-SV-DMZ-ORC-NODE02.4012038.5 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:06cff9a4c24de07a59fbffdf222304bf72bb8325c65fabea678db3528f190c94
3
- size 29937
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0eae67a28b752feccaafd09b7282341fdcced5207d443922c8fe43b4e93eb165
3
+ size 33866
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b99cce1a24cfaa82e9166a3d0298d48a15f1e1a4c06699e0066445a6b8e7124b
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a7d49c19940cd994990c8240312cb91694530cdbd723cb484726b40c44975d7
3
  size 450558212