Benedict-L
commited on
Commit
•
e0f7625
1
Parent(s):
56197b4
End of training
Browse files
README.md
CHANGED
@@ -17,14 +17,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
- Answer: {'precision': 0.
|
22 |
-
- Header: {'precision': 0.
|
23 |
-
- Question: {'precision': 0.
|
24 |
-
- Overall Precision: 0.
|
25 |
-
- Overall Recall: 0.
|
26 |
-
- Overall F1: 0.
|
27 |
-
- Overall Accuracy: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -54,23 +54,23 @@ The following hyperparameters were used during training:
|
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
-
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question
|
58 |
-
|
59 |
-
| 1.
|
60 |
-
| 1.
|
61 |
-
| 1.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
|
75 |
|
76 |
### Framework versions
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.6782
|
21 |
+
- Answer: {'precision': 0.694206008583691, 'recall': 0.799752781211372, 'f1': 0.7432510051694429, 'number': 809}
|
22 |
+
- Header: {'precision': 0.30952380952380953, 'recall': 0.3277310924369748, 'f1': 0.31836734693877555, 'number': 119}
|
23 |
+
- Question: {'precision': 0.769098712446352, 'recall': 0.8413145539906103, 'f1': 0.8035874439461884, 'number': 1065}
|
24 |
+
- Overall Precision: 0.7117
|
25 |
+
- Overall Recall: 0.7938
|
26 |
+
- Overall F1: 0.7505
|
27 |
+
- Overall Accuracy: 0.8017
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
59 |
+
| 1.8074 | 1.0 | 10 | 1.5777 | {'precision': 0.03731343283582089, 'recall': 0.037082818294190356, 'f1': 0.037197768133911964, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.25181598062953997, 'recall': 0.19530516431924883, 'f1': 0.21998942358540455, 'number': 1065} | 0.1460 | 0.1194 | 0.1314 | 0.3680 |
|
60 |
+
| 1.4231 | 2.0 | 20 | 1.2292 | {'precision': 0.24720068906115417, 'recall': 0.3547589616810878, 'f1': 0.29137055837563447, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4146341463414634, 'recall': 0.5906103286384976, 'f1': 0.4872192099147947, 'number': 1065} | 0.3420 | 0.4596 | 0.3922 | 0.6004 |
|
61 |
+
| 1.0745 | 3.0 | 30 | 0.9226 | {'precision': 0.4796828543111992, 'recall': 0.5982694684796045, 'f1': 0.5324532453245325, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5457122608079377, 'recall': 0.7230046948356808, 'f1': 0.6219709208400647, 'number': 1065} | 0.5102 | 0.6292 | 0.5635 | 0.7057 |
|
62 |
+
| 0.8254 | 4.0 | 40 | 0.7937 | {'precision': 0.569215876089061, 'recall': 0.7268232385661311, 'f1': 0.6384364820846906, 'number': 809} | {'precision': 0.1864406779661017, 'recall': 0.09243697478991597, 'f1': 0.12359550561797754, 'number': 119} | {'precision': 0.6400651465798045, 'recall': 0.7380281690140845, 'f1': 0.6855647623201047, 'number': 1065} | 0.5970 | 0.6949 | 0.6422 | 0.7517 |
|
63 |
+
| 0.6703 | 5.0 | 50 | 0.7225 | {'precision': 0.6260162601626016, 'recall': 0.761433868974042, 'f1': 0.6871165644171779, 'number': 809} | {'precision': 0.2413793103448276, 'recall': 0.17647058823529413, 'f1': 0.2038834951456311, 'number': 119} | {'precision': 0.6737421383647799, 'recall': 0.8046948356807512, 'f1': 0.7334189131364998, 'number': 1065} | 0.6376 | 0.7496 | 0.6891 | 0.7784 |
|
64 |
+
| 0.5723 | 6.0 | 60 | 0.6881 | {'precision': 0.6349206349206349, 'recall': 0.7911001236093943, 'f1': 0.7044578976334617, 'number': 809} | {'precision': 0.2127659574468085, 'recall': 0.16806722689075632, 'f1': 0.18779342723004694, 'number': 119} | {'precision': 0.7215081405312768, 'recall': 0.7906103286384977, 'f1': 0.7544802867383513, 'number': 1065} | 0.6620 | 0.7536 | 0.7048 | 0.7851 |
|
65 |
+
| 0.4989 | 7.0 | 70 | 0.6636 | {'precision': 0.6565040650406504, 'recall': 0.7985166872682324, 'f1': 0.720580033463469, 'number': 809} | {'precision': 0.27, 'recall': 0.226890756302521, 'f1': 0.24657534246575347, 'number': 119} | {'precision': 0.7410636442894507, 'recall': 0.7981220657276995, 'f1': 0.7685352622061482, 'number': 1065} | 0.6827 | 0.7642 | 0.7211 | 0.7938 |
|
66 |
+
| 0.4428 | 8.0 | 80 | 0.6578 | {'precision': 0.6629441624365482, 'recall': 0.8071693448702101, 'f1': 0.7279821627647713, 'number': 809} | {'precision': 0.2803738317757009, 'recall': 0.25210084033613445, 'f1': 0.2654867256637167, 'number': 119} | {'precision': 0.7472340425531915, 'recall': 0.8244131455399061, 'f1': 0.7839285714285714, 'number': 1065} | 0.6886 | 0.7832 | 0.7329 | 0.7947 |
|
67 |
+
| 0.3904 | 9.0 | 90 | 0.6481 | {'precision': 0.6839872746553552, 'recall': 0.7972805933250927, 'f1': 0.7363013698630138, 'number': 809} | {'precision': 0.27927927927927926, 'recall': 0.2605042016806723, 'f1': 0.26956521739130435, 'number': 119} | {'precision': 0.7502081598667777, 'recall': 0.8460093896713615, 'f1': 0.795233892321271, 'number': 1065} | 0.6993 | 0.7913 | 0.7425 | 0.8017 |
|
68 |
+
| 0.3817 | 10.0 | 100 | 0.6495 | {'precision': 0.6941176470588235, 'recall': 0.8022249690976514, 'f1': 0.7442660550458714, 'number': 809} | {'precision': 0.27049180327868855, 'recall': 0.2773109243697479, 'f1': 0.27385892116182575, 'number': 119} | {'precision': 0.7609630266552021, 'recall': 0.8309859154929577, 'f1': 0.7944344703770198, 'number': 1065} | 0.7059 | 0.7863 | 0.7439 | 0.8048 |
|
69 |
+
| 0.3252 | 11.0 | 110 | 0.6711 | {'precision': 0.697452229299363, 'recall': 0.8121137206427689, 'f1': 0.750428326670474, 'number': 809} | {'precision': 0.29411764705882354, 'recall': 0.29411764705882354, 'f1': 0.29411764705882354, 'number': 119} | {'precision': 0.76592082616179, 'recall': 0.8356807511737089, 'f1': 0.7992815446789402, 'number': 1065} | 0.7117 | 0.7938 | 0.7505 | 0.7979 |
|
70 |
+
| 0.3099 | 12.0 | 120 | 0.6680 | {'precision': 0.6943556975505857, 'recall': 0.8059332509270705, 'f1': 0.745995423340961, 'number': 809} | {'precision': 0.2966101694915254, 'recall': 0.29411764705882354, 'f1': 0.2953586497890296, 'number': 119} | {'precision': 0.7663793103448275, 'recall': 0.8347417840375587, 'f1': 0.7991011235955056, 'number': 1065} | 0.7109 | 0.7908 | 0.7487 | 0.8008 |
|
71 |
+
| 0.2926 | 13.0 | 130 | 0.6750 | {'precision': 0.689727463312369, 'recall': 0.8133498145859085, 'f1': 0.7464549064095293, 'number': 809} | {'precision': 0.32142857142857145, 'recall': 0.3025210084033613, 'f1': 0.3116883116883117, 'number': 119} | {'precision': 0.7805944055944056, 'recall': 0.8384976525821596, 'f1': 0.8085106382978724, 'number': 1065} | 0.7181 | 0.7963 | 0.7552 | 0.8020 |
|
72 |
+
| 0.2769 | 14.0 | 140 | 0.6757 | {'precision': 0.6956989247311828, 'recall': 0.799752781211372, 'f1': 0.7441058079355952, 'number': 809} | {'precision': 0.312, 'recall': 0.3277310924369748, 'f1': 0.31967213114754095, 'number': 119} | {'precision': 0.7677029360967185, 'recall': 0.8347417840375587, 'f1': 0.7998200629779576, 'number': 1065} | 0.7117 | 0.7903 | 0.7489 | 0.8024 |
|
73 |
+
| 0.2743 | 15.0 | 150 | 0.6782 | {'precision': 0.694206008583691, 'recall': 0.799752781211372, 'f1': 0.7432510051694429, 'number': 809} | {'precision': 0.30952380952380953, 'recall': 0.3277310924369748, 'f1': 0.31836734693877555, 'number': 119} | {'precision': 0.769098712446352, 'recall': 0.8413145539906103, 'f1': 0.8035874439461884, 'number': 1065} | 0.7117 | 0.7938 | 0.7505 | 0.8017 |
|
74 |
|
75 |
|
76 |
### Framework versions
|
logs/events.out.tfevents.1718870367.HCIDC-SV-DMZ-ORC-NODE02.3859593.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd4a913050d54953d0a52e45810422af9e29ca5479638b40c44dad29b9c5fdab
|
3 |
+
size 15984
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450558212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0291fb810a4d5867977b06706e2a9e49c98b26ddd2539d5ac2f0393fa9b9990
|
3 |
size 450558212
|