End of training
Browse files
README.md
CHANGED
@@ -17,14 +17,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
- Answer: {'precision': 0.
|
22 |
-
- Header: {'precision': 0.
|
23 |
-
- Question: {'precision': 0.
|
24 |
-
- Overall Precision: 0.
|
25 |
-
- Overall Recall: 0.
|
26 |
-
- Overall F1: 0.
|
27 |
-
- Overall Accuracy: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -49,28 +49,23 @@ The following hyperparameters were used during training:
|
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
-
- num_epochs:
|
53 |
- mixed_precision_training: Native AMP
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
-
| Training Loss | Epoch | Step | Validation Loss | Answer
|
58 |
-
|
59 |
-
| 1.
|
60 |
-
| 1.
|
61 |
-
| 1.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.3157 | 11.0 | 110 | 0.6550 | {'precision': 0.7084673097534834, 'recall': 0.8170580964153276, 'f1': 0.758897818599311, 'number': 809} | {'precision': 0.2846153846153846, 'recall': 0.31092436974789917, 'f1': 0.29718875502008035, 'number': 119} | {'precision': 0.7736013986013986, 'recall': 0.8309859154929577, 'f1': 0.8012675418741513, 'number': 1065} | 0.7173 | 0.7943 | 0.7538 | 0.8059 |
|
70 |
-
| 0.2999 | 12.0 | 120 | 0.6654 | {'precision': 0.7153762268266085, 'recall': 0.8108776266996292, 'f1': 0.7601390498261876, 'number': 809} | {'precision': 0.2962962962962963, 'recall': 0.33613445378151263, 'f1': 0.31496062992125984, 'number': 119} | {'precision': 0.7864768683274022, 'recall': 0.8300469483568075, 'f1': 0.8076747373229787, 'number': 1065} | 0.7261 | 0.7928 | 0.7580 | 0.8108 |
|
71 |
-
| 0.2827 | 13.0 | 130 | 0.6687 | {'precision': 0.7092274678111588, 'recall': 0.8170580964153276, 'f1': 0.7593337162550259, 'number': 809} | {'precision': 0.31746031746031744, 'recall': 0.33613445378151263, 'f1': 0.32653061224489793, 'number': 119} | {'precision': 0.7857142857142857, 'recall': 0.8366197183098592, 'f1': 0.8103683492496588, 'number': 1065} | 0.7263 | 0.7988 | 0.7608 | 0.8104 |
|
72 |
-
| 0.2652 | 14.0 | 140 | 0.6735 | {'precision': 0.7138193688792165, 'recall': 0.8108776266996292, 'f1': 0.7592592592592592, 'number': 809} | {'precision': 0.28888888888888886, 'recall': 0.3277310924369748, 'f1': 0.3070866141732283, 'number': 119} | {'precision': 0.7883082373782108, 'recall': 0.8356807511737089, 'f1': 0.8113035551504102, 'number': 1065} | 0.7261 | 0.7953 | 0.7591 | 0.8063 |
|
73 |
-
| 0.2599 | 15.0 | 150 | 0.6771 | {'precision': 0.7181719260065288, 'recall': 0.8158220024721878, 'f1': 0.7638888888888888, 'number': 809} | {'precision': 0.2867647058823529, 'recall': 0.3277310924369748, 'f1': 0.30588235294117644, 'number': 119} | {'precision': 0.7996406109613656, 'recall': 0.8356807511737089, 'f1': 0.8172635445362718, 'number': 1065} | 0.7329 | 0.7973 | 0.7638 | 0.8074 |
|
74 |
|
75 |
|
76 |
### Framework versions
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.6244
|
21 |
+
- Answer: {'precision': 0.6850886339937435, 'recall': 0.8121137206427689, 'f1': 0.743212669683258, 'number': 809}
|
22 |
+
- Header: {'precision': 0.3118279569892473, 'recall': 0.24369747899159663, 'f1': 0.27358490566037735, 'number': 119}
|
23 |
+
- Question: {'precision': 0.7454228421970357, 'recall': 0.8028169014084507, 'f1': 0.7730560578661845, 'number': 1065}
|
24 |
+
- Overall Precision: 0.7008
|
25 |
+
- Overall Recall: 0.7732
|
26 |
+
- Overall F1: 0.7352
|
27 |
+
- Overall Accuracy: 0.8082
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 10
|
53 |
- mixed_precision_training: Native AMP
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
59 |
+
| 1.815 | 1.0 | 10 | 1.5977 | {'precision': 0.01854714064914992, 'recall': 0.014833127317676144, 'f1': 0.01648351648351648, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.28852459016393445, 'recall': 0.1652582159624413, 'f1': 0.21014925373134327, 'number': 1065} | 0.1496 | 0.0943 | 0.1157 | 0.3533 |
|
60 |
+
| 1.4806 | 2.0 | 20 | 1.2889 | {'precision': 0.15517241379310345, 'recall': 0.20024721878862795, 'f1': 0.174851592012952, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.42313218390804597, 'recall': 0.5530516431924882, 'f1': 0.47944647944647945, 'number': 1065} | 0.3083 | 0.3768 | 0.3391 | 0.5762 |
|
61 |
+
| 1.1569 | 3.0 | 30 | 0.9771 | {'precision': 0.40138751238850345, 'recall': 0.5006180469715699, 'f1': 0.44554455445544555, 'number': 809} | {'precision': 0.038461538461538464, 'recall': 0.008403361344537815, 'f1': 0.013793103448275862, 'number': 119} | {'precision': 0.5620767494356659, 'recall': 0.7014084507042253, 'f1': 0.6240601503759399, 'number': 1065} | 0.4877 | 0.5785 | 0.5293 | 0.6555 |
|
62 |
+
| 0.891 | 4.0 | 40 | 0.8126 | {'precision': 0.5368516833484986, 'recall': 0.7292954264524104, 'f1': 0.618448637316562, 'number': 809} | {'precision': 0.16279069767441862, 'recall': 0.058823529411764705, 'f1': 0.08641975308641975, 'number': 119} | {'precision': 0.6547202797202797, 'recall': 0.7032863849765258, 'f1': 0.6781349026708917, 'number': 1065} | 0.5888 | 0.6754 | 0.6291 | 0.7338 |
|
63 |
+
| 0.7304 | 5.0 | 50 | 0.7076 | {'precision': 0.6277836691410392, 'recall': 0.7317676143386898, 'f1': 0.6757990867579908, 'number': 809} | {'precision': 0.22535211267605634, 'recall': 0.13445378151260504, 'f1': 0.16842105263157894, 'number': 119} | {'precision': 0.6539360872954014, 'recall': 0.787793427230047, 'f1': 0.7146507666098807, 'number': 1065} | 0.6300 | 0.7260 | 0.6746 | 0.7781 |
|
64 |
+
| 0.6363 | 6.0 | 60 | 0.6767 | {'precision': 0.6412825651302605, 'recall': 0.7911001236093943, 'f1': 0.7083563918096293, 'number': 809} | {'precision': 0.3235294117647059, 'recall': 0.18487394957983194, 'f1': 0.23529411764705885, 'number': 119} | {'precision': 0.7082969432314411, 'recall': 0.7615023474178404, 'f1': 0.7339366515837105, 'number': 1065} | 0.6662 | 0.7391 | 0.7008 | 0.7846 |
|
65 |
+
| 0.5714 | 7.0 | 70 | 0.6386 | {'precision': 0.6797040169133193, 'recall': 0.7948084054388134, 'f1': 0.7327635327635328, 'number': 809} | {'precision': 0.313953488372093, 'recall': 0.226890756302521, 'f1': 0.2634146341463415, 'number': 119} | {'precision': 0.726962457337884, 'recall': 0.8, 'f1': 0.7617344658024139, 'number': 1065} | 0.6906 | 0.7637 | 0.7253 | 0.8048 |
|
66 |
+
| 0.5241 | 8.0 | 80 | 0.6398 | {'precision': 0.6753112033195021, 'recall': 0.8046971569839307, 'f1': 0.7343485617597293, 'number': 809} | {'precision': 0.29213483146067415, 'recall': 0.2184873949579832, 'f1': 0.25, 'number': 119} | {'precision': 0.7306015693112468, 'recall': 0.7868544600938967, 'f1': 0.7576853526220616, 'number': 1065} | 0.6886 | 0.7602 | 0.7226 | 0.8005 |
|
67 |
+
| 0.4861 | 9.0 | 90 | 0.6272 | {'precision': 0.6785340314136126, 'recall': 0.8009888751545118, 'f1': 0.7346938775510204, 'number': 809} | {'precision': 0.3010752688172043, 'recall': 0.23529411764705882, 'f1': 0.2641509433962264, 'number': 119} | {'precision': 0.7407407407407407, 'recall': 0.8075117370892019, 'f1': 0.7726864330637916, 'number': 1065} | 0.6953 | 0.7707 | 0.7311 | 0.8087 |
|
68 |
+
| 0.5004 | 10.0 | 100 | 0.6244 | {'precision': 0.6850886339937435, 'recall': 0.8121137206427689, 'f1': 0.743212669683258, 'number': 809} | {'precision': 0.3118279569892473, 'recall': 0.24369747899159663, 'f1': 0.27358490566037735, 'number': 119} | {'precision': 0.7454228421970357, 'recall': 0.8028169014084507, 'f1': 0.7730560578661845, 'number': 1065} | 0.7008 | 0.7732 | 0.7352 | 0.8082 |
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
|
71 |
### Framework versions
|
logs/events.out.tfevents.1719554732.HCIDC-SV-DMZ-ORC-NODE02.2957937.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7dd5824c549ef16bcd65a7ec9b2e06b1c0e4fc9726b4b09e74ed44add7f4c926
|
3 |
+
size 12429
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450558212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:febbaddce7b38e42dcd79290daa00870e0e8f9245d4620ef0cac1831ffe918d3
|
3 |
size 450558212
|