Update README.md
Browse files
README.md
CHANGED
@@ -56,15 +56,21 @@ cae7b4ee8d1ad4e4402632bb0600cc17 ./tokenizer_config.json.ef7ef410b9b909949e96f1
|
|
56 |
|
57 |
2. Decrypt the files using the scripts in https://github.com/LianjiaTech/BELLE/tree/main/models
|
58 |
|
59 |
-
You can use the following command in Bash
|
|
|
|
|
|
|
|
|
60 |
```bash
|
61 |
-
|
|
|
62 |
do if [ -f "$f" ]; then \
|
63 |
-
python3 decrypt.py "$f" "/path/to_original_llama_13B/consolidated.00.pth" "
|
64 |
fi; \
|
65 |
done
|
66 |
```
|
67 |
|
|
|
68 |
After executing the aforementioned command, you will obtain the following files.
|
69 |
|
70 |
```
|
@@ -113,7 +119,7 @@ After you decrypt the files, BELLE-LLAMA-13B-2M can be easily loaded with LlamaF
|
|
113 |
from transformers import LlamaForCausalLM, AutoTokenizer
|
114 |
import torch
|
115 |
|
116 |
-
ckpt = './
|
117 |
device = torch.device('cuda')
|
118 |
model = LlamaForCausalLM.from_pretrained(ckpt, device_map='auto', low_cpu_mem_usage=True)
|
119 |
tokenizer = AutoTokenizer.from_pretrained(ckpt)
|
|
|
56 |
|
57 |
2. Decrypt the files using the scripts in https://github.com/LianjiaTech/BELLE/tree/main/models
|
58 |
|
59 |
+
You can use the following command in Bash,
|
60 |
+
Please replace "/path/to_encrypted" with the path where you stored your encrypted file,
|
61 |
+
replace "/path/to_original_llama_13B" with the path where you stored your original llama13B file,
|
62 |
+
and replace "/path/to_finetuned_model" with the path where you want to save your final trained model.:
|
63 |
+
|
64 |
```bash
|
65 |
+
mkdir /path/to_finetuned_model
|
66 |
+
for f in "/path/to_encrypted"/*; \
|
67 |
do if [ -f "$f" ]; then \
|
68 |
+
python3 decrypt.py "$f" "/path/to_original_llama_13B/consolidated.00.pth" "/path/to_finetuned_model/"; \
|
69 |
fi; \
|
70 |
done
|
71 |
```
|
72 |
|
73 |
+
|
74 |
After executing the aforementioned command, you will obtain the following files.
|
75 |
|
76 |
```
|
|
|
119 |
from transformers import LlamaForCausalLM, AutoTokenizer
|
120 |
import torch
|
121 |
|
122 |
+
ckpt = './path/to_finetuned_model/'
|
123 |
device = torch.device('cuda')
|
124 |
model = LlamaForCausalLM.from_pretrained(ckpt, device_map='auto', low_cpu_mem_usage=True)
|
125 |
tokenizer = AutoTokenizer.from_pretrained(ckpt)
|