barius commited on
Commit
b1c5a4d
1 Parent(s): 198cc00

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -6
README.md CHANGED
@@ -14,15 +14,15 @@ language:
14
  If you find this model helpful, please *like* this model and star us on https://github.com/LianjiaTech/BELLE !
15
 
16
  ## Model description
17
- 8 bits quantization of [Bloom](https://arxiv.org/pdf/2211.05100.pdf) using [GPTQ](https://arxiv.org/abs/2210.17323)
18
 
19
  GPTQ is SOTA one-shot weight quantization method.
20
 
21
- The code of inference can be found in our Github project repository: https://github.com/LianjiaTech/BELLE/gptq.
22
 
23
  Basically, 8-bit quantization and 128 groupsize are recommended.
24
 
25
- **This code is based on [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa)**
26
 
27
  ## Model list
28
 
@@ -34,6 +34,17 @@ Basically, 8-bit quantization and 128 groupsize are recommended.
34
  | bloom7b-0.2m-8bit-128g.pt | 9.7G | ~11.4G |
35
  | bloom7b-0.2m-4bit-128g.pt | 6.9G | ~8.4G |
36
 
 
 
 
 
 
 
 
 
 
 
 
37
  ## Citation
38
 
39
  Please cite us when using our code, data or model.
@@ -59,15 +70,15 @@ Cite the original BLOOM, Stanford Alpaca and Self-Instruct papers as well!
59
  如果您觉得此模型对您有帮助,请like此模型并在https://github.com/LianjiaTech/BELLE 项目中star我们!
60
 
61
  ## 模型描述
62
- 对[Bloom](https://arxiv.org/pdf/2211.05100.pdf)模型使用[GPTQ](https://arxiv.org/abs/2210.17323)进行8 bit(8位)量化。
63
 
64
  GPTQ是目前SOTA的one-shot权重量化方法。
65
 
66
- 此模型的推理代码请见https://github.com/LianjiaTech/BELLE/gptq .
67
 
68
  一般来说,推荐使用8-bit量化及groupsize = 128.
69
 
70
- **推理代码基于[GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa)**
71
 
72
  ## 模型列表
73
 
@@ -79,6 +90,17 @@ GPTQ是目前SOTA的one-shot权重量化方法。
79
  | bloom7b-0.2m-8bit-128g.pt | 9.7G | ~11.4G |
80
  | bloom7b-0.2m-4bit-128g.pt | 6.9G | ~8.4G |
81
 
 
 
 
 
 
 
 
 
 
 
 
82
  ## 引用
83
  如果使用本项目的代码、数据或模型,请引用本项目。
84
  ```
 
14
  If you find this model helpful, please *like* this model and star us on https://github.com/LianjiaTech/BELLE !
15
 
16
  ## Model description
17
+ 8 bits quantization of [BELLE-7B-2M](https://huggingface.co/BelleGroup/BELLE-7B-2M) and [BELLE-7B-0.2M](https://huggingface.co/BelleGroup/BELLE-7B-0.2M) using [GPTQ](https://arxiv.org/abs/2210.17323)
18
 
19
  GPTQ is SOTA one-shot weight quantization method.
20
 
21
+ The code of inference can be found in our Github project repository: https://github.com/LianjiaTech/BELLE/tree/main/gptq.
22
 
23
  Basically, 8-bit quantization and 128 groupsize are recommended.
24
 
25
+ **This code is based on [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa) for [Bloom](https://arxiv.org/pdf/2211.05100.pdf) model**
26
 
27
  ## Model list
28
 
 
34
  | bloom7b-0.2m-8bit-128g.pt | 9.7G | ~11.4G |
35
  | bloom7b-0.2m-4bit-128g.pt | 6.9G | ~8.4G |
36
 
37
+ ## Limitations
38
+ There still exists a few issues in the model trained on current base model and data:
39
+
40
+ 1. The model might generate factual errors when asked to follow instructions related to facts.
41
+
42
+ 2. Occasionally generates harmful responses since the model still struggles to identify potential harmful instructions.
43
+
44
+ 3. Needs improvements on reasoning and coding.
45
+
46
+ Since the model still has its limitations, we require developers only use the open-sourced code, data, model and any other artifacts generated via this project for research purposes. Commercial use and other potential harmful use cases are not allowed.
47
+
48
  ## Citation
49
 
50
  Please cite us when using our code, data or model.
 
70
  如果您觉得此模型对您有帮助,请like此模型并在https://github.com/LianjiaTech/BELLE 项目中star我们!
71
 
72
  ## 模型描述
73
+ 对[BELLE-7B-2M](https://huggingface.co/BelleGroup/BELLE-7B-2M) and [BELLE-7B-0.2M](https://huggingface.co/BelleGroup/BELLE-7B-0.2M)进行8 bit(8位)量化。
74
 
75
  GPTQ是目前SOTA的one-shot权重量化方法。
76
 
77
+ 此模型的推理代码请见https://github.com/LianjiaTech/BELLE/tree/main/gptq .
78
 
79
  一般来说,推荐使用8-bit量化及groupsize = 128.
80
 
81
+ **[Bloom](https://arxiv.org/pdf/2211.05100.pdf)模型使用[GPTQ](https://arxiv.org/abs/2210.17323)的推理代码基于[GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa)**
82
 
83
  ## 模型列表
84
 
 
90
  | bloom7b-0.2m-8bit-128g.pt | 9.7G | ~11.4G |
91
  | bloom7b-0.2m-4bit-128g.pt | 6.9G | ~8.4G |
92
 
93
+ ## 局限性和使用限制
94
+ 基于当前数据和基础模型训练得到的SFT模型,在效果上仍存在以下问题:
95
+
96
+ 1. 在涉及事实性的指令上可能会产生违背事实的错误回答。
97
+
98
+ 2. 对于具备危害性的指令无法很好的鉴别,由此会产生危害性言论。
99
+
100
+ 3. 在一些涉及推理、代码等场景下模型的能力仍有待提高。
101
+
102
+ 基于以上模型局限性,我们要求开发者仅将我们开源的代码、数据、模型及后续用此项目生成的衍生物用于研究目的,不得用于商业,以及其他会对社会带来危害的用途。
103
+
104
  ## 引用
105
  如果使用本项目的代码、数据或模型,请引用本项目。
106
  ```