ppo-Pyramid / run_logs /timers.json
Behnam's picture
First Push
9a10dcb
{
"name": "root",
"gauges": {
"Pyramids.Policy.Entropy.mean": {
"value": 0.4394199848175049,
"min": 0.43576881289482117,
"max": 1.436813235282898,
"count": 33
},
"Pyramids.Policy.Entropy.sum": {
"value": 13309.15234375,
"min": 12961.5078125,
"max": 43587.16796875,
"count": 33
},
"Pyramids.Step.mean": {
"value": 989949.0,
"min": 29939.0,
"max": 989949.0,
"count": 33
},
"Pyramids.Step.sum": {
"value": 989949.0,
"min": 29939.0,
"max": 989949.0,
"count": 33
},
"Pyramids.Policy.ExtrinsicValueEstimate.mean": {
"value": 0.32521969079971313,
"min": -0.151437908411026,
"max": 0.36951524019241333,
"count": 33
},
"Pyramids.Policy.ExtrinsicValueEstimate.sum": {
"value": 84.23190307617188,
"min": -36.03480911254883,
"max": 97.18251037597656,
"count": 33
},
"Pyramids.Policy.RndValueEstimate.mean": {
"value": -0.215140700340271,
"min": -0.215140700340271,
"max": 0.4236548840999603,
"count": 33
},
"Pyramids.Policy.RndValueEstimate.sum": {
"value": -55.72144317626953,
"min": -55.72144317626953,
"max": 100.40620422363281,
"count": 33
},
"Pyramids.Losses.PolicyLoss.mean": {
"value": 0.0689723463690708,
"min": 0.06636317444023486,
"max": 0.07237280837681882,
"count": 33
},
"Pyramids.Losses.PolicyLoss.sum": {
"value": 0.9656128491669912,
"min": 0.5066096586377318,
"max": 1.0703955069184303,
"count": 33
},
"Pyramids.Losses.ValueLoss.mean": {
"value": 0.022408789294394067,
"min": 0.0008289831317047771,
"max": 0.022408789294394067,
"count": 33
},
"Pyramids.Losses.ValueLoss.sum": {
"value": 0.3137230501215169,
"min": 0.011605763843866879,
"max": 0.3137230501215169,
"count": 33
},
"Pyramids.Policy.LearningRate.mean": {
"value": 7.470783224057143e-06,
"min": 7.470783224057143e-06,
"max": 0.00029515063018788575,
"count": 33
},
"Pyramids.Policy.LearningRate.sum": {
"value": 0.0001045909651368,
"min": 0.0001045909651368,
"max": 0.003510825229724999,
"count": 33
},
"Pyramids.Policy.Epsilon.mean": {
"value": 0.10249022857142856,
"min": 0.10249022857142856,
"max": 0.19838354285714285,
"count": 33
},
"Pyramids.Policy.Epsilon.sum": {
"value": 1.4348632,
"min": 1.3886848,
"max": 2.5702750000000005,
"count": 33
},
"Pyramids.Policy.Beta.mean": {
"value": 0.00025877383428571425,
"min": 0.00025877383428571425,
"max": 0.00983851593142857,
"count": 33
},
"Pyramids.Policy.Beta.sum": {
"value": 0.0036228336799999997,
"min": 0.0036228336799999997,
"max": 0.11705047249999999,
"count": 33
},
"Pyramids.Losses.RNDLoss.mean": {
"value": 0.018394289538264275,
"min": 0.018394289538264275,
"max": 0.5522270798683167,
"count": 33
},
"Pyramids.Losses.RNDLoss.sum": {
"value": 0.25752004981040955,
"min": 0.25752004981040955,
"max": 3.8655893802642822,
"count": 33
},
"Pyramids.Environment.EpisodeLength.mean": {
"value": 533.9454545454546,
"min": 461.93939393939394,
"max": 992.1176470588235,
"count": 33
},
"Pyramids.Environment.EpisodeLength.sum": {
"value": 29367.0,
"min": 16866.0,
"max": 32144.0,
"count": 33
},
"Pyramids.Environment.CumulativeReward.mean": {
"value": 1.1800392606694783,
"min": -0.9105125488713384,
"max": 1.3238768922594877,
"count": 33
},
"Pyramids.Environment.CumulativeReward.sum": {
"value": 66.08219859749079,
"min": -29.136401563882828,
"max": 86.0519979968667,
"count": 33
},
"Pyramids.Policy.ExtrinsicReward.mean": {
"value": 1.1800392606694783,
"min": -0.9105125488713384,
"max": 1.3238768922594877,
"count": 33
},
"Pyramids.Policy.ExtrinsicReward.sum": {
"value": 66.08219859749079,
"min": -29.136401563882828,
"max": 86.0519979968667,
"count": 33
},
"Pyramids.Policy.RndReward.mean": {
"value": 0.10050944155799309,
"min": 0.0901295617607852,
"max": 10.837626076796475,
"count": 33
},
"Pyramids.Policy.RndReward.sum": {
"value": 5.6285287272476126,
"min": 5.6285287272476126,
"max": 184.23964330554008,
"count": 33
},
"Pyramids.IsTraining.mean": {
"value": 1.0,
"min": 1.0,
"max": 1.0,
"count": 33
},
"Pyramids.IsTraining.sum": {
"value": 1.0,
"min": 1.0,
"max": 1.0,
"count": 33
}
},
"metadata": {
"timer_format_version": "0.1.0",
"start_time_seconds": "1681293158",
"python_version": "3.9.16 (main, Dec 7 2022, 01:11:51) \n[GCC 9.4.0]",
"command_line_arguments": "/usr/local/bin/mlagents-learn ./config/ppo/PyramidsRND.yaml --env=./training-envs-executables/linux/Pyramids/Pyramids --run-id=Pyramids Training --no-graphics",
"mlagents_version": "0.31.0.dev0",
"mlagents_envs_version": "0.31.0.dev0",
"communication_protocol_version": "1.5.0",
"pytorch_version": "1.11.0+cu102",
"numpy_version": "1.21.2",
"end_time_seconds": "1681295200"
},
"total": 2041.7107992919996,
"count": 1,
"self": 0.4748003899994728,
"children": {
"run_training.setup": {
"total": 0.17428825399974812,
"count": 1,
"self": 0.17428825399974812
},
"TrainerController.start_learning": {
"total": 2041.0617106480004,
"count": 1,
"self": 1.374537877944931,
"children": {
"TrainerController._reset_env": {
"total": 4.473501295999995,
"count": 1,
"self": 4.473501295999995
},
"TrainerController.advance": {
"total": 2035.114706293055,
"count": 63505,
"self": 1.407388960004937,
"children": {
"env_step": {
"total": 1424.1374075239764,
"count": 63505,
"self": 1318.423122392022,
"children": {
"SubprocessEnvManager._take_step": {
"total": 104.86183132200222,
"count": 63505,
"self": 4.667152993994478,
"children": {
"TorchPolicy.evaluate": {
"total": 100.19467832800774,
"count": 62571,
"self": 100.19467832800774
}
}
},
"workers": {
"total": 0.8524538099522943,
"count": 63505,
"self": 0.0,
"children": {
"worker_root": {
"total": 2036.209034784049,
"count": 63505,
"is_parallel": true,
"self": 827.7204428611312,
"children": {
"run_training.setup": {
"total": 0.0,
"count": 0,
"is_parallel": true,
"self": 0.0,
"children": {
"steps_from_proto": {
"total": 0.002628277999974671,
"count": 1,
"is_parallel": true,
"self": 0.0007775689991831314,
"children": {
"_process_rank_one_or_two_observation": {
"total": 0.0018507090007915394,
"count": 8,
"is_parallel": true,
"self": 0.0018507090007915394
}
}
},
"UnityEnvironment.step": {
"total": 0.05971577999980582,
"count": 1,
"is_parallel": true,
"self": 0.000523820000125852,
"children": {
"UnityEnvironment._generate_step_input": {
"total": 0.0004575190000650764,
"count": 1,
"is_parallel": true,
"self": 0.0004575190000650764
},
"communicator.exchange": {
"total": 0.056991263999861985,
"count": 1,
"is_parallel": true,
"self": 0.056991263999861985
},
"steps_from_proto": {
"total": 0.0017431769997529045,
"count": 1,
"is_parallel": true,
"self": 0.0003983069996138511,
"children": {
"_process_rank_one_or_two_observation": {
"total": 0.0013448700001390534,
"count": 8,
"is_parallel": true,
"self": 0.0013448700001390534
}
}
}
}
}
}
},
"UnityEnvironment.step": {
"total": 1208.4885919229177,
"count": 63504,
"is_parallel": true,
"self": 31.989826823958538,
"children": {
"UnityEnvironment._generate_step_input": {
"total": 22.575828650937183,
"count": 63504,
"is_parallel": true,
"self": 22.575828650937183
},
"communicator.exchange": {
"total": 1061.5763531529947,
"count": 63504,
"is_parallel": true,
"self": 1061.5763531529947
},
"steps_from_proto": {
"total": 92.34658329502736,
"count": 63504,
"is_parallel": true,
"self": 19.5437134210124,
"children": {
"_process_rank_one_or_two_observation": {
"total": 72.80286987401496,
"count": 508032,
"is_parallel": true,
"self": 72.80286987401496
}
}
}
}
}
}
}
}
}
}
},
"trainer_advance": {
"total": 609.5699098090736,
"count": 63505,
"self": 2.5793742401024247,
"children": {
"process_trajectory": {
"total": 103.83068366097314,
"count": 63505,
"self": 103.60240765597337,
"children": {
"RLTrainer._checkpoint": {
"total": 0.22827600499977052,
"count": 2,
"self": 0.22827600499977052
}
}
},
"_update_policy": {
"total": 503.159851907998,
"count": 456,
"self": 322.7716608240221,
"children": {
"TorchPPOOptimizer.update": {
"total": 180.38819108397593,
"count": 22770,
"self": 180.38819108397593
}
}
}
}
}
}
},
"trainer_threads": {
"total": 9.430004865862429e-07,
"count": 1,
"self": 9.430004865862429e-07
},
"TrainerController._save_models": {
"total": 0.09896423800000775,
"count": 1,
"self": 0.0014460660004260717,
"children": {
"RLTrainer._checkpoint": {
"total": 0.09751817199958168,
"count": 1,
"self": 0.09751817199958168
}
}
}
}
}
}
}