Initial commit
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- first_model.zip +3 -0
- first_model/_stable_baselines3_version +1 -0
- first_model/data +94 -0
- first_model/policy.optimizer.pth +3 -0
- first_model/policy.pth +3 -0
- first_model/pytorch_variables.pth +3 -0
- first_model/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: ppo-MlpPolicy
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 233.66 +/- 36.77
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **ppo-MlpPolicy** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **ppo-MlpPolicy** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0166a89680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0166a89710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0166a897a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0166a89830>", "_build": "<function ActorCriticPolicy._build at 0x7f0166a898c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0166a89950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0166a899e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0166a89a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0166a89b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0166a89b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0166a89c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0166ae3150>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651864704.7172234, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAICSBz6mSQw/AsttvQz5uL5h4YA9SoD6vQAAAAAAAAAAzRThPMMJO7rSLou7nm/etcbgQLnrkp06AACAPwAAgD9NCqO9KXx/uhRsuDs6+ks4PMP2Okd1MbgAAIA/AACAP03vSL1IwZW695iDOjU7nDUnSA07dtuDNAAAgD8AAIA/+nwKvgTizz56cLE9ar5kvr7DWT3NILS9AAAAAAAAAAAaX2+9j745uoBShDujX0w4KKQcutJXIbgAAIA/AACAP5qnwr0pEHa6Hijgud3/c7V0lj476WsAOQAAgD8AAIA/WpXOPVwzP7rykhu6jA2kNaIlq7oRwTM5AACAPwAAgD+a7Ju9XKcouhW7bjvPiTc20qgIu7q5iboAAIA/AACAP82Flb0Qcrk+bKiMvHVcgr7/lZO98pqOvAAAAAAAAAAAmgHzuz1Kc7ljZ0g8f0DBNq8LJLua+b41AACAPwAAgD+alka9roOTuhnOJLs9SPU2Ul4Xuy6jV7YAAIA/AACAP73Gib6S0rM8qq/JOWs3QrhF/0e+XT0AuQAAgD8AAIA/BkdqvrRQrz5ywRg98J2IvqGM4L29r7C8AAAAAAAAAAAAcGI99swYuik3jLseuz421RAZujK8pToAAIA/AACAP/3JTr484mU+YtI6PSayRr5ipdc8cZjCvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISn8vhQdtEcCUhpRSlIwBbJRLp4wBdJRHQIDQe4kNWlx1fZQoaAZoCWgPQwicilQYW0liQJSGlFKUaBVN6ANoFkdAgNnIIF/x2HV9lChoBmgJaA9DCNEGYAMikFxAlIaUUpRoFU3oA2gWR0CA5VYVZcLSdX2UKGgGaAloD0MIswkwLH8yW0CUhpRSlGgVTegDaBZHQIDrj1PFefJ1fZQoaAZoCWgPQwgKndfYJVVeQJSGlFKUaBVN6ANoFkdAgO0CD/VAiXV9lChoBmgJaA9DCMHJNnCHo2FAlIaUUpRoFU3oA2gWR0CA9/2LYPGydX2UKGgGaAloD0MImlyMgXUDXkCUhpRSlGgVTegDaBZHQID5+skpqh11fZQoaAZoCWgPQwi8PJ0rSkpVQJSGlFKUaBVN6ANoFkdAgQatJWeYlnV9lChoBmgJaA9DCCmxa3u7wVdAlIaUUpRoFU3oA2gWR0CBFSMFUyYYdX2UKGgGaAloD0MIY0LMJVUXSUCUhpRSlGgVS81oFkdAgRpZ1/2Cd3V9lChoBmgJaA9DCBcuq7AZJGBAlIaUUpRoFU3oA2gWR0CBUw3CsOoYdX2UKGgGaAloD0MIFK+ytim+XkCUhpRSlGgVTegDaBZHQIFWmzdDYyx1fZQoaAZoCWgPQwguqdpugvZYQJSGlFKUaBVN6ANoFkdAgWCsyrPt2XV9lChoBmgJaA9DCK4P641aRFlAlIaUUpRoFU3oA2gWR0CBg3jm0VrRdX2UKGgGaAloD0MIvi8uVWlIXMCUhpRSlGgVS9xoFkdAgYTo0ALiM3V9lChoBmgJaA9DCI8YPbdQn2FAlIaUUpRoFU3oA2gWR0CBkH3IuGsWdX2UKGgGaAloD0MIvkupS8YIaUCUhpRSlGgVTR8DaBZHQIGUi/h2nsN1fZQoaAZoCWgPQwjWq8jogA9hQJSGlFKUaBVN6ANoFkdAgZvinxaxHHV9lChoBmgJaA9DCIv+0MyT/l1AlIaUUpRoFU3oA2gWR0CBoFLCemNzdX2UKGgGaAloD0MIUFH1K51dUECUhpRSlGgVS+BoFkdAgapoacZtN3V9lChoBmgJaA9DCDiEKjX7FmBAlIaUUpRoFU3oA2gWR0CBrAu14Pf9dX2UKGgGaAloD0MIEyujkU/qYUCUhpRSlGgVTegDaBZHQIG9z4Hooux1fZQoaAZoCWgPQwg9C0J5n8VjQJSGlFKUaBVN6ANoFkdAgcMkuQIUrXV9lChoBmgJaA9DCETDYtS1zGBAlIaUUpRoFU3oA2gWR0CBxGwr1/UfdX2UKGgGaAloD0MIQS5x5IE0NkCUhpRSlGgVS95oFkdAgcyw6QvHtHV9lChoBmgJaA9DCB7ec2C5qGBAlIaUUpRoFU3oA2gWR0CBznATIvJzdX2UKGgGaAloD0MIeXk6VxStYkCUhpRSlGgVTegDaBZHQIHcVe2NNrV1fZQoaAZoCWgPQwhMw/ARMQlnQJSGlFKUaBVN6ANoFkdAgel9w3o9tHV9lChoBmgJaA9DCLfsEP8w/mRAlIaUUpRoFU3oA2gWR0CB7oZAIIGAdX2UKGgGaAloD0MIPrFOle+3X0CUhpRSlGgVTegDaBZHQIHvhYNiH7B1fZQoaAZoCWgPQwibO/pfrrhkQJSGlFKUaBVN6ANoFkdAgikbRv3rU3V9lChoBmgJaA9DCKKYvAHmcWFAlIaUUpRoFU3oA2gWR0CCVEycCo0idX2UKGgGaAloD0MIIc1YNB0iYkCUhpRSlGgVTegDaBZHQIJhQF9roGJ1fZQoaAZoCWgPQwhrY+yElxpbQJSGlFKUaBVN6ANoFkdAgmUu2Zy+6HV9lChoBmgJaA9DCLbZWIl5v1lAlIaUUpRoFU3oA2gWR0CCbIMBp5/tdX2UKGgGaAloD0MIz/OnjWqdYkCUhpRSlGgVTegDaBZHQIJwydxyXD51fZQoaAZoCWgPQwhGfZI7bARlQJSGlFKUaBVN6ANoFkdAgntwZflZHXV9lChoBmgJaA9DCCV32ERmrEpAlIaUUpRoFUvNaBZHQIKNTyYoiLV1fZQoaAZoCWgPQwhX6e46G7ZaQJSGlFKUaBVN6ANoFkdAgpBcIRh+fHV9lChoBmgJaA9DCFhyFYtfSW5AlIaUUpRoFU1DAWgWR0CClhUx20RfdX2UKGgGaAloD0MIjrETXoKkX0CUhpRSlGgVTegDaBZHQIKWZBkZrHl1fZQoaAZoCWgPQwgf14aKcfhZQJSGlFKUaBVN6ANoFkdAgpfIjGDL83V9lChoBmgJaA9DCNodUgyQ6FlAlIaUUpRoFU3oA2gWR0CCoBSEUTL4dX2UKGgGaAloD0MIv30dOGcECECUhpRSlGgVS/BoFkdAgqEYpUgjhXV9lChoBmgJaA9DCJwU5j3OVF9AlIaUUpRoFU3oA2gWR0CCocKsMiKSdX2UKGgGaAloD0MIke7nFGQUZECUhpRSlGgVTegDaBZHQIKtyT6i0v51fZQoaAZoCWgPQwgTu7a3W4heQJSGlFKUaBVN6ANoFkdAgrndCVrylXV9lChoBmgJaA9DCETf3coSfWFAlIaUUpRoFU3oA2gWR0CCvpKUVzp5dX2UKGgGaAloD0MIvkwUIXUsZkCUhpRSlGgVTegDaBZHQIK/izsyBTZ1fZQoaAZoCWgPQwhjRnh7EAlbQJSGlFKUaBVN6ANoFkdAgsJk+gUUPHV9lChoBmgJaA9DCHS1FfvL7tG/lIaUUpRoFUv8aBZHQILDIa3qiXZ1fZQoaAZoCWgPQwgnh086kWtbQJSGlFKUaBVN6ANoFkdAgx3dd/rjYXV9lChoBmgJaA9DCGgj100pslxAlIaUUpRoFU3oA2gWR0CDLT9ZRsMzdX2UKGgGaAloD0MIcclxp3SLYkCUhpRSlGgVTegDaBZHQIM4WGO+7Dl1fZQoaAZoCWgPQwgx0/avrB9fQJSGlFKUaBVN6ANoFkdAg1UIwM6RyXV9lChoBmgJaA9DCM9J7xtfyFxAlIaUUpRoFU3oA2gWR0CDWAoMrmQsdX2UKGgGaAloD0MIi8HDtG/SXUCUhpRSlGgVTegDaBZHQINdlUADJU51fZQoaAZoCWgPQwhzY3rCknlgQJSGlFKUaBVN6ANoFkdAg13nF5v9+HV9lChoBmgJaA9DCGFrtvISuWFAlIaUUpRoFU3oA2gWR0CDX0eRxLkCdX2UKGgGaAloD0MIIY/gRkrFYECUhpRSlGgVTegDaBZHQINntPznRsx1fZQoaAZoCWgPQwgY6xuY3P5jQJSGlFKUaBVN6ANoFkdAg2iqoAGSp3V9lChoBmgJaA9DCMu+K4J/cmhAlIaUUpRoFU3oA2gWR0CDdltpmEoOdX2UKGgGaAloD0MI51JcVfZKXkCUhpRSlGgVTegDaBZHQIOD3X/YJ3R1fZQoaAZoCWgPQwiUTiSY6kZgQJSGlFKUaBVN6ANoFkdAg4j5MURFqnV9lChoBmgJaA9DCF1txf6ykmRAlIaUUpRoFU3oA2gWR0CDigF7D2rXdX2UKGgGaAloD0MIMxgjEoUoY0CUhpRSlGgVTegDaBZHQIONDWRRuTB1fZQoaAZoCWgPQwjhehSuR1tYQJSGlFKUaBVN6ANoFkdAg43OgpSaVnV9lChoBmgJaA9DCKWGNgCb0WxAlIaUUpRoFU1ZAWgWR0CD3akZaV2SdX2UKGgGaAloD0MIOBQ+WwdrPECUhpRSlGgVS+JoFkdAg+IZ+6RQrXV9lChoBmgJaA9DCIP4wI7/Q2NAlIaUUpRoFU3oA2gWR0CD6bo371qWdX2UKGgGaAloD0MIXDy858AXXECUhpRSlGgVTegDaBZHQIP358lXzUZ1fZQoaAZoCWgPQwh/L4UHTeJhQJSGlFKUaBVN6ANoFkdAhAKqVhTfi3V9lChoBmgJaA9DCMEZ/P1i415AlIaUUpRoFU3oA2gWR0CEHnL/S6UadX2UKGgGaAloD0MIdjbknxksYUCUhpRSlGgVTegDaBZHQIQhf4mCyyF1fZQoaAZoCWgPQwg+WwcHe+JhQJSGlFKUaBVN6ANoFkdAhCbhhYvFnHV9lChoBmgJaA9DCET67etAyGFAlIaUUpRoFU3oA2gWR0CEJzKSxJNCdX2UKGgGaAloD0MIKhprf2cXWECUhpRSlGgVTegDaBZHQIQohL0z0pV1fZQoaAZoCWgPQwj6RnTPuj9mQJSGlFKUaBVN6ANoFkdAhDC1Bt1p03V9lChoBmgJaA9DCPS/XIsW6VpAlIaUUpRoFU3oA2gWR0CEMa+SKWLQdX2UKGgGaAloD0MIzcr2IW95GkCUhpRSlGgVS+hoFkdAhEkMu3+db3V9lChoBmgJaA9DCGB3uvPEZ15AlIaUUpRoFU3oA2gWR0CETNO45Lh8dX2UKGgGaAloD0MIO3DOiFILZ0CUhpRSlGgVTegDaBZHQIRRphQWN3p1fZQoaAZoCWgPQwjKcDyfARJfQJSGlFKUaBVN6ANoFkdAhFK+JP69CnV9lChoBmgJaA9DCNC3BUv1eWBAlIaUUpRoFU3oA2gWR0CEVrRYRujzdX2UKGgGaAloD0MIqhCPxEvZYUCUhpRSlGgVTegDaBZHQISpSQiiZfF1fZQoaAZoCWgPQwgPR1fpbtJgQJSGlFKUaBVN6ANoFkdAhK4UoKD02HV9lChoBmgJaA9DCHWOAdnrXmRAlIaUUpRoFU3oA2gWR0CEtf1KXfIkdX2UKGgGaAloD0MIf0sA/il6X0CUhpRSlGgVTegDaBZHQITDp/0/W2B1fZQoaAZoCWgPQwgsfeiCeqBkQJSGlFKUaBVN6ANoFkdAhM494u9OAXV9lChoBmgJaA9DCJj3ONOEk2VAlIaUUpRoFU3oA2gWR0CE6pdmg8KYdX2UKGgGaAloD0MIn6pCA7GZX0CUhpRSlGgVTegDaBZHQITtelyimEZ1fZQoaAZoCWgPQwjwUX+9Qp5lQJSGlFKUaBVN6ANoFkdAhPMepGWldnV9lChoBmgJaA9DCG+9pgcF8GJAlIaUUpRoFU3oA2gWR0CE83Ire67NdX2UKGgGaAloD0MI8piByvgdZECUhpRSlGgVTegDaBZHQIT84X/HYHx1fZQoaAZoCWgPQwj3Hi457pdhQJSGlFKUaBVN6ANoFkdAhP3Y5tFa0XV9lChoBmgJaA9DCPMFLSRgnGJAlIaUUpRoFU3oA2gWR0CFFYS13MY/dX2UKGgGaAloD0MI6E8b1ekkZkCUhpRSlGgVTegDaBZHQIUZWcYqG1x1fZQoaAZoCWgPQwjL2NDN/nVkQJSGlFKUaBVN6ANoFkdAhR4kaVD8cnV9lChoBmgJaA9DCLJGPUSjomFAlIaUUpRoFU3oA2gWR0CFHybXpW3jdX2UKGgGaAloD0MIPglszsEPZECUhpRSlGgVTegDaBZHQIUi8XcgyM11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
first_model.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:892140ef6b18f8e7e2a482ec20b7d67c0d264062107394df522c39d2b45c1b5a
|
3 |
+
size 144036
|
first_model/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
first_model/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f0166a89680>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0166a89710>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0166a897a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0166a89830>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f0166a898c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f0166a89950>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0166a899e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f0166a89a70>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0166a89b00>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0166a89b90>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0166a89c20>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f0166ae3150>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651864704.7172234,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAICSBz6mSQw/AsttvQz5uL5h4YA9SoD6vQAAAAAAAAAAzRThPMMJO7rSLou7nm/etcbgQLnrkp06AACAPwAAgD9NCqO9KXx/uhRsuDs6+ks4PMP2Okd1MbgAAIA/AACAP03vSL1IwZW695iDOjU7nDUnSA07dtuDNAAAgD8AAIA/+nwKvgTizz56cLE9ar5kvr7DWT3NILS9AAAAAAAAAAAaX2+9j745uoBShDujX0w4KKQcutJXIbgAAIA/AACAP5qnwr0pEHa6Hijgud3/c7V0lj476WsAOQAAgD8AAIA/WpXOPVwzP7rykhu6jA2kNaIlq7oRwTM5AACAPwAAgD+a7Ju9XKcouhW7bjvPiTc20qgIu7q5iboAAIA/AACAP82Flb0Qcrk+bKiMvHVcgr7/lZO98pqOvAAAAAAAAAAAmgHzuz1Kc7ljZ0g8f0DBNq8LJLua+b41AACAPwAAgD+alka9roOTuhnOJLs9SPU2Ul4Xuy6jV7YAAIA/AACAP73Gib6S0rM8qq/JOWs3QrhF/0e+XT0AuQAAgD8AAIA/BkdqvrRQrz5ywRg98J2IvqGM4L29r7C8AAAAAAAAAAAAcGI99swYuik3jLseuz421RAZujK8pToAAIA/AACAP/3JTr484mU+YtI6PSayRr5ipdc8cZjCvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISn8vhQdtEcCUhpRSlIwBbJRLp4wBdJRHQIDQe4kNWlx1fZQoaAZoCWgPQwicilQYW0liQJSGlFKUaBVN6ANoFkdAgNnIIF/x2HV9lChoBmgJaA9DCNEGYAMikFxAlIaUUpRoFU3oA2gWR0CA5VYVZcLSdX2UKGgGaAloD0MIswkwLH8yW0CUhpRSlGgVTegDaBZHQIDrj1PFefJ1fZQoaAZoCWgPQwgKndfYJVVeQJSGlFKUaBVN6ANoFkdAgO0CD/VAiXV9lChoBmgJaA9DCMHJNnCHo2FAlIaUUpRoFU3oA2gWR0CA9/2LYPGydX2UKGgGaAloD0MImlyMgXUDXkCUhpRSlGgVTegDaBZHQID5+skpqh11fZQoaAZoCWgPQwi8PJ0rSkpVQJSGlFKUaBVN6ANoFkdAgQatJWeYlnV9lChoBmgJaA9DCCmxa3u7wVdAlIaUUpRoFU3oA2gWR0CBFSMFUyYYdX2UKGgGaAloD0MIY0LMJVUXSUCUhpRSlGgVS81oFkdAgRpZ1/2Cd3V9lChoBmgJaA9DCBcuq7AZJGBAlIaUUpRoFU3oA2gWR0CBUw3CsOoYdX2UKGgGaAloD0MIFK+ytim+XkCUhpRSlGgVTegDaBZHQIFWmzdDYyx1fZQoaAZoCWgPQwguqdpugvZYQJSGlFKUaBVN6ANoFkdAgWCsyrPt2XV9lChoBmgJaA9DCK4P641aRFlAlIaUUpRoFU3oA2gWR0CBg3jm0VrRdX2UKGgGaAloD0MIvi8uVWlIXMCUhpRSlGgVS9xoFkdAgYTo0ALiM3V9lChoBmgJaA9DCI8YPbdQn2FAlIaUUpRoFU3oA2gWR0CBkH3IuGsWdX2UKGgGaAloD0MIvkupS8YIaUCUhpRSlGgVTR8DaBZHQIGUi/h2nsN1fZQoaAZoCWgPQwjWq8jogA9hQJSGlFKUaBVN6ANoFkdAgZvinxaxHHV9lChoBmgJaA9DCIv+0MyT/l1AlIaUUpRoFU3oA2gWR0CBoFLCemNzdX2UKGgGaAloD0MIUFH1K51dUECUhpRSlGgVS+BoFkdAgapoacZtN3V9lChoBmgJaA9DCDiEKjX7FmBAlIaUUpRoFU3oA2gWR0CBrAu14Pf9dX2UKGgGaAloD0MIEyujkU/qYUCUhpRSlGgVTegDaBZHQIG9z4Hooux1fZQoaAZoCWgPQwg9C0J5n8VjQJSGlFKUaBVN6ANoFkdAgcMkuQIUrXV9lChoBmgJaA9DCETDYtS1zGBAlIaUUpRoFU3oA2gWR0CBxGwr1/UfdX2UKGgGaAloD0MIQS5x5IE0NkCUhpRSlGgVS95oFkdAgcyw6QvHtHV9lChoBmgJaA9DCB7ec2C5qGBAlIaUUpRoFU3oA2gWR0CBznATIvJzdX2UKGgGaAloD0MIeXk6VxStYkCUhpRSlGgVTegDaBZHQIHcVe2NNrV1fZQoaAZoCWgPQwhMw/ARMQlnQJSGlFKUaBVN6ANoFkdAgel9w3o9tHV9lChoBmgJaA9DCLfsEP8w/mRAlIaUUpRoFU3oA2gWR0CB7oZAIIGAdX2UKGgGaAloD0MIPrFOle+3X0CUhpRSlGgVTegDaBZHQIHvhYNiH7B1fZQoaAZoCWgPQwibO/pfrrhkQJSGlFKUaBVN6ANoFkdAgikbRv3rU3V9lChoBmgJaA9DCKKYvAHmcWFAlIaUUpRoFU3oA2gWR0CCVEycCo0idX2UKGgGaAloD0MIIc1YNB0iYkCUhpRSlGgVTegDaBZHQIJhQF9roGJ1fZQoaAZoCWgPQwhrY+yElxpbQJSGlFKUaBVN6ANoFkdAgmUu2Zy+6HV9lChoBmgJaA9DCLbZWIl5v1lAlIaUUpRoFU3oA2gWR0CCbIMBp5/tdX2UKGgGaAloD0MIz/OnjWqdYkCUhpRSlGgVTegDaBZHQIJwydxyXD51fZQoaAZoCWgPQwhGfZI7bARlQJSGlFKUaBVN6ANoFkdAgntwZflZHXV9lChoBmgJaA9DCCV32ERmrEpAlIaUUpRoFUvNaBZHQIKNTyYoiLV1fZQoaAZoCWgPQwhX6e46G7ZaQJSGlFKUaBVN6ANoFkdAgpBcIRh+fHV9lChoBmgJaA9DCFhyFYtfSW5AlIaUUpRoFU1DAWgWR0CClhUx20RfdX2UKGgGaAloD0MIjrETXoKkX0CUhpRSlGgVTegDaBZHQIKWZBkZrHl1fZQoaAZoCWgPQwgf14aKcfhZQJSGlFKUaBVN6ANoFkdAgpfIjGDL83V9lChoBmgJaA9DCNodUgyQ6FlAlIaUUpRoFU3oA2gWR0CCoBSEUTL4dX2UKGgGaAloD0MIv30dOGcECECUhpRSlGgVS/BoFkdAgqEYpUgjhXV9lChoBmgJaA9DCJwU5j3OVF9AlIaUUpRoFU3oA2gWR0CCocKsMiKSdX2UKGgGaAloD0MIke7nFGQUZECUhpRSlGgVTegDaBZHQIKtyT6i0v51fZQoaAZoCWgPQwgTu7a3W4heQJSGlFKUaBVN6ANoFkdAgrndCVrylXV9lChoBmgJaA9DCETf3coSfWFAlIaUUpRoFU3oA2gWR0CCvpKUVzp5dX2UKGgGaAloD0MIvkwUIXUsZkCUhpRSlGgVTegDaBZHQIK/izsyBTZ1fZQoaAZoCWgPQwhjRnh7EAlbQJSGlFKUaBVN6ANoFkdAgsJk+gUUPHV9lChoBmgJaA9DCHS1FfvL7tG/lIaUUpRoFUv8aBZHQILDIa3qiXZ1fZQoaAZoCWgPQwgnh086kWtbQJSGlFKUaBVN6ANoFkdAgx3dd/rjYXV9lChoBmgJaA9DCGgj100pslxAlIaUUpRoFU3oA2gWR0CDLT9ZRsMzdX2UKGgGaAloD0MIcclxp3SLYkCUhpRSlGgVTegDaBZHQIM4WGO+7Dl1fZQoaAZoCWgPQwgx0/avrB9fQJSGlFKUaBVN6ANoFkdAg1UIwM6RyXV9lChoBmgJaA9DCM9J7xtfyFxAlIaUUpRoFU3oA2gWR0CDWAoMrmQsdX2UKGgGaAloD0MIi8HDtG/SXUCUhpRSlGgVTegDaBZHQINdlUADJU51fZQoaAZoCWgPQwhzY3rCknlgQJSGlFKUaBVN6ANoFkdAg13nF5v9+HV9lChoBmgJaA9DCGFrtvISuWFAlIaUUpRoFU3oA2gWR0CDX0eRxLkCdX2UKGgGaAloD0MIIY/gRkrFYECUhpRSlGgVTegDaBZHQINntPznRsx1fZQoaAZoCWgPQwgY6xuY3P5jQJSGlFKUaBVN6ANoFkdAg2iqoAGSp3V9lChoBmgJaA9DCMu+K4J/cmhAlIaUUpRoFU3oA2gWR0CDdltpmEoOdX2UKGgGaAloD0MI51JcVfZKXkCUhpRSlGgVTegDaBZHQIOD3X/YJ3R1fZQoaAZoCWgPQwiUTiSY6kZgQJSGlFKUaBVN6ANoFkdAg4j5MURFqnV9lChoBmgJaA9DCF1txf6ykmRAlIaUUpRoFU3oA2gWR0CDigF7D2rXdX2UKGgGaAloD0MIMxgjEoUoY0CUhpRSlGgVTegDaBZHQIONDWRRuTB1fZQoaAZoCWgPQwjhehSuR1tYQJSGlFKUaBVN6ANoFkdAg43OgpSaVnV9lChoBmgJaA9DCKWGNgCb0WxAlIaUUpRoFU1ZAWgWR0CD3akZaV2SdX2UKGgGaAloD0MIOBQ+WwdrPECUhpRSlGgVS+JoFkdAg+IZ+6RQrXV9lChoBmgJaA9DCIP4wI7/Q2NAlIaUUpRoFU3oA2gWR0CD6bo371qWdX2UKGgGaAloD0MIXDy858AXXECUhpRSlGgVTegDaBZHQIP358lXzUZ1fZQoaAZoCWgPQwh/L4UHTeJhQJSGlFKUaBVN6ANoFkdAhAKqVhTfi3V9lChoBmgJaA9DCMEZ/P1i415AlIaUUpRoFU3oA2gWR0CEHnL/S6UadX2UKGgGaAloD0MIdjbknxksYUCUhpRSlGgVTegDaBZHQIQhf4mCyyF1fZQoaAZoCWgPQwg+WwcHe+JhQJSGlFKUaBVN6ANoFkdAhCbhhYvFnHV9lChoBmgJaA9DCET67etAyGFAlIaUUpRoFU3oA2gWR0CEJzKSxJNCdX2UKGgGaAloD0MIKhprf2cXWECUhpRSlGgVTegDaBZHQIQohL0z0pV1fZQoaAZoCWgPQwj6RnTPuj9mQJSGlFKUaBVN6ANoFkdAhDC1Bt1p03V9lChoBmgJaA9DCPS/XIsW6VpAlIaUUpRoFU3oA2gWR0CEMa+SKWLQdX2UKGgGaAloD0MIzcr2IW95GkCUhpRSlGgVS+hoFkdAhEkMu3+db3V9lChoBmgJaA9DCGB3uvPEZ15AlIaUUpRoFU3oA2gWR0CETNO45Lh8dX2UKGgGaAloD0MIO3DOiFILZ0CUhpRSlGgVTegDaBZHQIRRphQWN3p1fZQoaAZoCWgPQwjKcDyfARJfQJSGlFKUaBVN6ANoFkdAhFK+JP69CnV9lChoBmgJaA9DCNC3BUv1eWBAlIaUUpRoFU3oA2gWR0CEVrRYRujzdX2UKGgGaAloD0MIqhCPxEvZYUCUhpRSlGgVTegDaBZHQISpSQiiZfF1fZQoaAZoCWgPQwgPR1fpbtJgQJSGlFKUaBVN6ANoFkdAhK4UoKD02HV9lChoBmgJaA9DCHWOAdnrXmRAlIaUUpRoFU3oA2gWR0CEtf1KXfIkdX2UKGgGaAloD0MIf0sA/il6X0CUhpRSlGgVTegDaBZHQITDp/0/W2B1fZQoaAZoCWgPQwgsfeiCeqBkQJSGlFKUaBVN6ANoFkdAhM494u9OAXV9lChoBmgJaA9DCJj3ONOEk2VAlIaUUpRoFU3oA2gWR0CE6pdmg8KYdX2UKGgGaAloD0MIn6pCA7GZX0CUhpRSlGgVTegDaBZHQITtelyimEZ1fZQoaAZoCWgPQwjwUX+9Qp5lQJSGlFKUaBVN6ANoFkdAhPMepGWldnV9lChoBmgJaA9DCG+9pgcF8GJAlIaUUpRoFU3oA2gWR0CE83Ire67NdX2UKGgGaAloD0MI8piByvgdZECUhpRSlGgVTegDaBZHQIT84X/HYHx1fZQoaAZoCWgPQwj3Hi457pdhQJSGlFKUaBVN6ANoFkdAhP3Y5tFa0XV9lChoBmgJaA9DCPMFLSRgnGJAlIaUUpRoFU3oA2gWR0CFFYS13MY/dX2UKGgGaAloD0MI6E8b1ekkZkCUhpRSlGgVTegDaBZHQIUZWcYqG1x1fZQoaAZoCWgPQwjL2NDN/nVkQJSGlFKUaBVN6ANoFkdAhR4kaVD8cnV9lChoBmgJaA9DCLJGPUSjomFAlIaUUpRoFU3oA2gWR0CFHybXpW3jdX2UKGgGaAloD0MIPglszsEPZECUhpRSlGgVTegDaBZHQIUi8XcgyM11ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
first_model/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d64e7da1edf9fe560065e344521eb2e2cb3a514054a7fb2d088577b0bcb0ed3
|
3 |
+
size 84829
|
first_model/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d3f9c9beb1e1cdff5176e81460242b1befb52e6fe3c39a1ff58a15db3c20acf
|
3 |
+
size 43201
|
first_model/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
first_model/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:690189da627224c8ff897e3c9b3934c2a1175f19faa7d4bee85a40b90b16b57c
|
3 |
+
size 251814
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 233.65577190637342, "std_reward": 36.76798565399029, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T19:33:39.333100"}
|