nreimers
upload
036acda
raw
history blame
12.6 kB
from torch.utils.data import DataLoader
from sentence_transformers import losses, util, models
from sentence_transformers import SentencesDataset, LoggingHandler, SentenceTransformer, evaluation
from sentence_transformers.readers import InputExample
import logging
from datetime import datetime
import os
from shutil import copyfile
import sys
import math
import gzip
import random
import tqdm
from transformers import AutoTokenizer, AutoModel, BertModel
import transformers
import torch
from SPARTA import SPARTA
import json
import numpy as np
from torch.cuda.amp import autocast
import os
from shutil import copyfile
import datetime
from collections import defaultdict
from scipy.sparse import csc_matrix, csr_matrix
random.seed(42)
scaler = torch.cuda.amp.GradScaler()
#### Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
handlers=[LoggingHandler()])
#### /print debug information to stdout
# Fill GPU
fill_gpu = torch.eye(85000, dtype=torch.float, device='cuda')
del fill_gpu
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model_name = sys.argv[1]
model = SPARTA(model_name, device)
model_save_path = "output/msmarco-{}-{}".format(model_name.rstrip("/").split("/")[-1], datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
model.tokenizer.save_pretrained(model_save_path)
##Distil setting
if 'distil' in model_name:
batch_size, num_negatives = 4, 35
else:
batch_size, num_negatives = 3, 20
logging.info(f"batch_size: {batch_size}")
logging.info(f"num_neg: {num_negatives}")
# Write self to path
os.makedirs(model_save_path, exist_ok=True)
train_script_path = os.path.join(model_save_path, 'train_script.py')
copyfile(__file__, train_script_path)
with open(train_script_path, 'a') as fOut:
fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv))
########################
corpus = {}
train_queries = {}
#### Read dev file
logging.info("Create dev dataset")
dev_corpus_max_size = 100*1000
dev_queries_file = '../data/queries.dev.small.tsv'
needed_pids = set()
needed_qids = set()
dev_qids = set()
dev_queries = {}
dev_corpus = {}
dev_rel_docs = {}
with open(dev_queries_file) as fIn:
for line in fIn:
qid, query = line.strip().split("\t")
dev_qids.add(qid)
with open('../data/qrels.dev.tsv') as fIn:
for line in fIn:
qid, _, pid, _ = line.strip().split('\t')
if qid not in dev_qids:
continue
if qid not in dev_rel_docs:
dev_rel_docs[qid] = set()
dev_rel_docs[qid].add(pid)
needed_pids.add(pid)
needed_qids.add(qid)
with open(dev_queries_file) as fIn:
for line in fIn:
qid, query = line.strip().split("\t")
if qid in needed_qids:
dev_queries[qid] = query
with gzip.open('../data/collection-rnd.tsv.gz', 'rt') as fIn:
for line in fIn:
pid, passage = line.strip().split("\t")
if pid in needed_pids or dev_corpus_max_size <= 0 or len(dev_corpus) <= dev_corpus_max_size:
dev_corpus[pid] = passage
dev_corpus_pids = list(dev_corpus.keys())
dev_corpus = [dev_corpus[pid] for pid in dev_corpus_pids]
########### Eval functions
def compute_passage_emb(passages):
sparse_embeddings = []
bert_input_emb = model.bert_model.embeddings.word_embeddings(torch.tensor(list(range(0, len(model.tokenizer))), device=device))
sparse_vec_size = 2000
# Set Special tokens [CLS] [MASK] etc. to zero
for special_id in model.tokenizer.all_special_ids:
bert_input_emb[special_id] = 0 * bert_input_emb[special_id]
with torch.no_grad():
tokens = model.tokenizer(passages, padding=True, truncation=True, return_tensors='pt', max_length=500).to(device)
passage_embeddings = model.bert_model(**tokens).last_hidden_state
for passage_emb in passage_embeddings:
scores = torch.matmul(bert_input_emb, passage_emb.transpose(0, 1))
max_scores = torch.max(scores, dim=-1).values
relu_scores = torch.relu(max_scores) #Eq. 5
final_scores = torch.log(relu_scores + 1) # Eq. 6, final score
top_results = torch.topk(final_scores, k=sparse_vec_size, sorted=True)
passage_emb = defaultdict(float)
for score, idx in zip(top_results[0].cpu().tolist(), top_results[1].cpu().tolist()):
if score > 0:
passage_emb[idx] = score
else:
break
sparse_embeddings.append(passage_emb)
return sparse_embeddings
def evaluate_msmarco():
passage_embs_sorted = []
batch_size = 32
length_sorted_idx = np.argsort([-len(pas) for pas in dev_corpus])
dev_corpus_sorted = [dev_corpus[idx] for idx in length_sorted_idx]
for start_idx in tqdm.trange(0, len(dev_corpus_sorted), batch_size, desc='encode corpus'):
passage_embs_sorted.extend(compute_passage_emb(dev_corpus_sorted[start_idx:start_idx + batch_size]))
passage_embs = [passage_embs_sorted[idx] for idx in np.argsort(length_sorted_idx)]
logging.info("Create sparse matrix")
row = []
col = []
values = []
for pid, emb in enumerate(passage_embs):
for tid, score in emb.items():
row.append(tid)
col.append(pid)
values.append(score)
sparse = csr_matrix((values, (row, col)), shape=(len(model.tokenizer), len(passage_embs)), dtype=np.float)
logging.info("Scores: {}".format(sparse.shape))
mrr = []
k = 10
for qid, question in tqdm.tqdm(dev_queries.items(), desc="score"):
token_ids = model.tokenizer(question, add_special_tokens=False)['input_ids']
# Get the candidate passages
scores = np.asarray(sparse[token_ids, :].sum(axis=0)).squeeze(0)
top_k_ind = np.argpartition(scores, -k)[-k:]
hits = sorted([(dev_corpus_pids[pid], scores[pid]) for pid in top_k_ind], key=lambda x: x[1], reverse=True)
mrr_score = 0
for rank, hit in enumerate(hits[0:10]):
pid = hit[0]
if pid in dev_rel_docs[qid]:
mrr_score = 1 / (rank + 1)
break
mrr.append(mrr_score)
assert len(mrr) == len(dev_queries)
mrr = np.mean(mrr)
logging.info("MRR@10: {:.4f}".format(mrr))
return mrr
best_score = 0 #evaluate_msmarco()
#################
#### Read train file
with gzip.open('../data/collection.tsv.gz', 'rt') as fIn:
for line in fIn:
pid, passage = line.strip().split("\t")
corpus[pid] = passage
with open('../data/queries.train.tsv', 'r') as fIn:
for line in fIn:
qid, query = line.strip().split("\t")
train_queries[qid] = {'query': query,
'pos': set(),
'soft-pos': set(),
'neg': set()}
#Read qrels file for relevant positives per query
with open('../data/qrels.train.tsv') as fIn:
for line in fIn:
qid, _, pid, _ = line.strip().split()
train_queries[qid]['pos'].add(pid)
logging.info("Clean train queries")
deleted_queries = 0
for qid in list(train_queries.keys()):
if len(train_queries[qid]['pos']) == 0:
deleted_queries += 1
del train_queries[qid]
continue
logging.info("Deleted queries pos-empty: {}".format(deleted_queries))
for hard_neg_file in ['../data/hard-negatives-all.jsonl.gz']: #'../data/hard-negatives-ann-roberta.jsonl.gz']: #['../data/hard-negatives-ann-msmarco-distilbert-base-v2.jsonl.gz', '../data/hard-negatives-ann.jsonl.gz', '../data/hard-negatives-ann-no_idnt.jsonl.gz', '../data/hard-negatives-all.jsonl.gz']:
logging.info("Read hard negatives: "+hard_neg_file)
with gzip.open(hard_neg_file, 'rt') as fIn:
try:
for line in fIn:
try:
data = json.loads(line)
except:
continue
qid = data['qid']
if qid in train_queries:
neg_added = 0
max_neg_added = 100
hits = sorted(data['hits'], key=lambda x: x['score'] if 'score' in x else x['bm25-score'], reverse=True)
for hit in hits:
pid = hit['corpus_id'] if 'corpus_id' in hit else hit['pid']
if pid in train_queries[qid]['pos']: #Skip entries we have as positives
continue
if hit['bert-score'] < 0.1 and neg_added < max_neg_added:
train_queries[qid]['neg'].add(pid)
neg_added += 1
elif hit['bert-score'] > 0.9:
train_queries[qid]['soft-pos'].add(pid)
except:
pass
logging.info("Clean train queries with empty neg set")
deleted_queries = 0
for qid in list(train_queries.keys()):
if len(train_queries[qid]['neg']) == 0:
deleted_queries += 1
del train_queries[qid]
continue
logging.info("Deleted queries neg empty: {}".format(deleted_queries))
train_queries = list(train_queries.values())
for idx in range(len(train_queries)):
train_queries[idx]['pos'] = list(train_queries[idx]['pos'])
train_queries[idx]['neg'] = list(train_queries[idx]['neg'])
train_queries[idx]['soft-pos'] = list(train_queries[idx]['soft-pos'])
###########################################
####
# Prepare optimizers
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
grad_acc_steps, lr = 1, 2e-5
#grad_acc_steps, lr = 16, 2e-5
num_epochs = 1
optimizer = transformers.AdamW(model.parameters(), lr=lr, eps=1e-6) #optimizer_grouped_parameters
t_total = math.ceil(len(train_queries)/batch_size*num_epochs)
num_warmup_steps = int(t_total/grad_acc_steps * 0.1) #10% for warm up
scheduler = transformers.get_linear_schedule_with_warmup(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=t_total)
loss_fct = torch.nn.CrossEntropyLoss()
max_grad_norm = 1
for epoch in tqdm.trange(num_epochs, desc='Epochs'):
random.shuffle(train_queries)
idx = 0
for start_idx in tqdm.trange(0, len(train_queries), batch_size):
idx += 1
if (idx) % 5000 == 0:
score = evaluate_msmarco()
if score > best_score:
best_score = score
model.bert_model.save_pretrained(model_save_path)
logging.info(f"Save to {model_save_path}")
batch = train_queries[start_idx:start_idx+batch_size]
queries = [b['query'] for b in batch]
#First the positives
passages = [corpus[random.choice(b['pos'])] for b in batch]
#Then the negatives
for b in batch:
for pid in random.sample(b['neg'], k=min(len(b['neg']), num_negatives)):
passages.append(corpus[pid])
label = torch.tensor(list(range(len(batch))), device=device)
##FP16
with autocast():
final_scores = model(queries, passages)
final_scores = 5*final_scores
loss_value = loss_fct(final_scores, label) / grad_acc_steps
scaler.scale(loss_value).backward()
if (idx + 1) % grad_acc_steps == 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
scaler.step(optimizer)
scaler.update()
model.zero_grad()
scheduler.step()
"""
#Normal FP32 with grad acc
final_scores = model(query, passages)
#Compute loss
loss_value = loss_fct(final_scores, label)
if grad_acc_steps > 1:
loss_value /= grad_acc_steps
loss_value.backward()
if (idx+1) % grad_acc_steps == 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
optimizer.step()
model.zero_grad()
scheduler.step()
"""
logging.info("Final eval:")
evaluate_msmarco()
# Script was called via:
#python train_sparta_msmarco.py distilbert-base-uncased no weight decay, 5* score scaling