BarefootBayes commited on
Commit
bca1390
1 Parent(s): 48e7639

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 252.59 +/- 23.30
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 267.04 +/- 22.03
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8efef21f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8efef26040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8efef260d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8efef26160>", "_build": "<function ActorCriticPolicy._build at 0x7f8efef261f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8efef26280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8efef26310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8efef263a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8efef26430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8efef264c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8efef26550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8efef265e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8efef24120>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676998282592956386, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMB4C760HEc+oH7JPTvqXL7ineW7rSRXPQAAAAAAAAAA2u7CvhTAZT/m/2Q+IyarvqEzpb779n8+AAAAAAAAAADmTEa9FKaFuhKy4jQuHGwwzL4hu3YTN7QAAIA/AACAP80cujwoa40+hpPpvGdOZb7B6Qy9WcVKvQAAAAAAAAAAZrCkPZyWlT7oDXO9Moo2vrl2Gb36Bq89AAAAAAAAAAAzuUs8a04QP/6jkb3akIu+k3MlvEuBhb0AAAAAAAAAAObAKL1nIFs+Kw6Hve5bZ76ezPK8L3ApvQAAAAAAAAAAMzYmvYSf7T4qhg89tRl4viECurieK4I8AAAAAAAAAAAApN074fKXug9IPLagvx+x4WMAu5ACaDUAAIA/AACAP2YuaL3Bgb+8ifwHvIVSIT1Wcwm+jfpbugAAgD8AAIA/M1EMvZ+2kTwDXeK9gE1zvnZq/bxQL+g9AAAAAAAAAABAVsq9GMKIP7atDL42ULa+WRnyvc1UdD0AAAAAAAAAAPNVEb4bPNc9MZ45PUotMb4WxoK9Wsu5PQAAAAAAAAAAZnzKvLgbhbvVjsS5J1iIPEl40DwjPWm9AACAPwAAgD9m5oC9g+U3PRLkCz6q0i++qPODPZ1y3b0AAAAAAAAAAGADHz6U8X0/N2AfPn5ssb4DCE4+UCklvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+3WnO4+UcECUhpRSlIwBbJRNNAGMAXSUR0CSg5eNDMNddX2UKGgGaAloD0MImNwostYgb0CUhpRSlGgVTWoBaBZHQJKD66kIomZ1fZQoaAZoCWgPQwgqcR3jSqRxQJSGlFKUaBVNUQFoFkdAkoRdt65Xl3V9lChoBmgJaA9DCFcFajF4f3BAlIaUUpRoFU1DAWgWR0CSmLWilBQfdX2UKGgGaAloD0MIu38sRAeHcECUhpRSlGgVTVQBaBZHQJKZDj4pMHt1fZQoaAZoCWgPQwiWk1D6Ql9yQJSGlFKUaBVNJQFoFkdAkpmoI8hcJXV9lChoBmgJaA9DCPOuesC8vWxAlIaUUpRoFU2AAWgWR0CSmeYNiH6/dX2UKGgGaAloD0MIVUs6ysGRbECUhpRSlGgVTVwBaBZHQJKaoWXTmXB1fZQoaAZoCWgPQwhdbFopxIpyQJSGlFKUaBVNQwFoFkdAkpq/Jq7AcnV9lChoBmgJaA9DCCHkvP8P4m5AlIaUUpRoFU1nAWgWR0CSm77p3X7MdX2UKGgGaAloD0MIgzEiUWhybkCUhpRSlGgVTUABaBZHQJKb9NwiqyZ1fZQoaAZoCWgPQwgKn62DA1NtQJSGlFKUaBVNWAFoFkdAkp6/3N9piHV9lChoBmgJaA9DCFPMQdARwnBAlIaUUpRoFU21AWgWR0CSoJ9/BnBddX2UKGgGaAloD0MI43FRLWKkcUCUhpRSlGgVTVkBaBZHQJKhMqgAZKp1fZQoaAZoCWgPQwj7yoP0VLxwQJSGlFKUaBVNRQFoFkdAkqN1gc94eXV9lChoBmgJaA9DCK3e4XYoSnJAlIaUUpRoFU1nAWgWR0CSo4Q/5ckddX2UKGgGaAloD0MIRBSTN0CDckCUhpRSlGgVTUkBaBZHQJKkiCuloDh1fZQoaAZoCWgPQwgpCYm0DdFsQJSGlFKUaBVNXgFoFkdAkqUnQID5kHV9lChoBmgJaA9DCFTle0ai7W1AlIaUUpRoFU01AWgWR0CSpXLgXMyKdX2UKGgGaAloD0MIkEqxo3GJbkCUhpRSlGgVTWUBaBZHQJKmiPjn3cp1fZQoaAZoCWgPQwj+7h015sNwQJSGlFKUaBVNKwFoFkdAkqbB6nivPnV9lChoBmgJaA9DCFch5ScVjXFAlIaUUpRoFU1UAWgWR0CSp2ZBLPD6dX2UKGgGaAloD0MIB13Cobe/cECUhpRSlGgVTV0BaBZHQJKosEdNnGt1fZQoaAZoCWgPQwia7Qp98ARyQJSGlFKUaBVNYwFoFkdAkqpuxSpBHHV9lChoBmgJaA9DCD+MEB4t93BAlIaUUpRoFU2LAWgWR0CSrsK6FuejdX2UKGgGaAloD0MI0LhwIGSCcECUhpRSlGgVTa8BaBZHQJKu8xO+IuZ1fZQoaAZoCWgPQwh1x2Kb1AxxQJSGlFKUaBVNQAFoFkdAkq9Bu89Oh3V9lChoBmgJaA9DCGssYW2MUWxAlIaUUpRoFU02AWgWR0CSsSP1L8JldX2UKGgGaAloD0MIEqJ8QQuqcECUhpRSlGgVTUwBaBZHQJKxu7ROUMZ1fZQoaAZoCWgPQwhJaTaPQwBuQJSGlFKUaBVNPQFoFkdAkrNFbaAWi3V9lChoBmgJaA9DCJnyIaga6G5AlIaUUpRoFU1oAWgWR0CStRom5UcXdX2UKGgGaAloD0MI4UbKFklTb0CUhpRSlGgVTU0BaBZHQJK1RGkN4JN1fZQoaAZoCWgPQwhgAUwZOAFxQJSGlFKUaBVNTgFoFkdAkrWHkcS5AnV9lChoBmgJaA9DCLWLaaa7kHFAlIaUUpRoFU2LAWgWR0CStzgCfYjCdX2UKGgGaAloD0MItAQZARUCb0CUhpRSlGgVTTQBaBZHQJK3Q9r433p1fZQoaAZoCWgPQwiDiqpfaQ5xQJSGlFKUaBVNVQFoFkdAkrduZG8VYnV9lChoBmgJaA9DCJ6zBYQWe3JAlIaUUpRoFU1rAWgWR0CSt6iMo+fRdX2UKGgGaAloD0MImC8vwD7ncECUhpRSlGgVTX4BaBZHQJK4EREnb7F1fZQoaAZoCWgPQwjtmSUBqpRwQJSGlFKUaBVNKQFoFkdAkrgZBLPD53V9lChoBmgJaA9DCHZwsDexIHFAlIaUUpRoFU0wAWgWR0CSuqz/p+tsdX2UKGgGaAloD0MIFy1A2+pabkCUhpRSlGgVTS8BaBZHQJK620BwMph1fZQoaAZoCWgPQwi/LO3U3GBxQJSGlFKUaBVNPAFoFkdAkrr8L0BfbHV9lChoBmgJaA9DCLEzhc5rS29AlIaUUpRoFU1AAWgWR0CSvI7JnxrjdX2UKGgGaAloD0MIY4BEEyiPcECUhpRSlGgVTUIBaBZHQJK9BqmCROl1fZQoaAZoCWgPQwjL8+Du7L5wQJSGlFKUaBVNEANoFkdAkr2t/rjYI3V9lChoBmgJaA9DCPBN02eHUHBAlIaUUpRoFU1FAWgWR0CSvnwz+FURdX2UKGgGaAloD0MIeV2/YLcxbUCUhpRSlGgVTTEBaBZHQJK/zlijL0V1fZQoaAZoCWgPQwgGZoUiXUtwQJSGlFKUaBVNSwFoFkdAksBijgydnXV9lChoBmgJaA9DCA01CkkmmXBAlIaUUpRoFU1OAWgWR0CSwKdTo+wDdX2UKGgGaAloD0MI8MLWbOVybECUhpRSlGgVTUkBaBZHQJLVu25QP7N1fZQoaAZoCWgPQwjJAFDFjaRsQJSGlFKUaBVNPgFoFkdAktXGIXTEznV9lChoBmgJaA9DCE/MejHUh3FAlIaUUpRoFU0xAWgWR0CS1c/+KjzqdX2UKGgGaAloD0MIAFZHjvTdbECUhpRSlGgVTT0BaBZHQJLWRK9PDYR1fZQoaAZoCWgPQwhksU0qmodvQJSGlFKUaBVNXQFoFkdAktZlkQPI4nV9lChoBmgJaA9DCEaU9gafTnFAlIaUUpRoFU2KAWgWR0CS1/QdjoZAdX2UKGgGaAloD0MIAIv8+iGjcUCUhpRSlGgVTR8BaBZHQJLYKxVyWAx1fZQoaAZoCWgPQwhGtYgo5klyQJSGlFKUaBVNKwFoFkdAkthbE9+w1XV9lChoBmgJaA9DCFluaTWkkmxAlIaUUpRoFU0lAWgWR0CS2HFxGUfQdX2UKGgGaAloD0MI3GPpQ5fDbECUhpRSlGgVTVoBaBZHQJLb4W0qpcZ1fZQoaAZoCWgPQwg1JO6x9OdwQJSGlFKUaBVNVAFoFkdAktw4aDPGAHV9lChoBmgJaA9DCKK1os2xrXBAlIaUUpRoFU07AWgWR0CS3PtZV4ordX2UKGgGaAloD0MIRrHc0iqRckCUhpRSlGgVTV4BaBZHQJLdgGRmseZ1fZQoaAZoCWgPQwj18dB3N/VxQJSGlFKUaBVNQAFoFkdAkt7PQrtmc3V9lChoBmgJaA9DCB+hZkjVXnFAlIaUUpRoFU1DAWgWR0CS4C2KVII4dX2UKGgGaAloD0MIeZRKeEJSbUCUhpRSlGgVTVYBaBZHQJLg09Pk7wN1fZQoaAZoCWgPQwiXH7jKkwFxQJSGlFKUaBVNJAFoFkdAkuHxBJI1+HV9lChoBmgJaA9DCLjoZKk1onBAlIaUUpRoFU1BAWgWR0CS4nHdoFmndX2UKGgGaAloD0MI4WHaN/cJc0CUhpRSlGgVTU0BaBZHQJLjHTYukDZ1fZQoaAZoCWgPQwi4lPPFXt5yQJSGlFKUaBVNagFoFkdAkuTG6f8Mu3V9lChoBmgJaA9DCAsL7gc8YHBAlIaUUpRoFU0+AWgWR0CS5hEeQuEmdX2UKGgGaAloD0MIj+OHSiMTbUCUhpRSlGgVTTMBaBZHQJLmYoLG7z11fZQoaAZoCWgPQwhblq/LMHNwQJSGlFKUaBVNfAFoFkdAkuZyZF5OanV9lChoBmgJaA9DCAwh5/1/OWxAlIaUUpRoFU1XAWgWR0CS5+1aW5YpdX2UKGgGaAloD0MIWHA/4EH8cECUhpRSlGgVTXEBaBZHQJLo1XjlxOt1fZQoaAZoCWgPQwg7Vik904MtQJSGlFKUaBVL+mgWR0CS6Yj8k2P1dX2UKGgGaAloD0MI1v85zFfUcUCUhpRSlGgVTSgBaBZHQJLqzU+cH4Z1fZQoaAZoCWgPQwgxQ+OJINpvQJSGlFKUaBVNMQFoFkdAkurm16Vt43V9lChoBmgJaA9DCGlwW1v4/XBAlIaUUpRoFU03AWgWR0CS7MqubI91dX2UKGgGaAloD0MIeei7W1kBbECUhpRSlGgVTSQBaBZHQJLtMI3R5Tt1fZQoaAZoCWgPQwibdcb3hVFxQJSGlFKUaBVNLAFoFkdAku6ao60Y0nV9lChoBmgJaA9DCH8yxofZgz9AlIaUUpRoFU0ZAWgWR0CS7rU4JeE7dX2UKGgGaAloD0MI4pANpEtqcECUhpRSlGgVTSEBaBZHQJLvQgB91EF1fZQoaAZoCWgPQwjKplzhHU1wQJSGlFKUaBVNKgFoFkdAku/wXuVopXV9lChoBmgJaA9DCEjcY+lD/GxAlIaUUpRoFU0qAWgWR0CS8OulGgBcdX2UKGgGaAloD0MIs0KR7ie2ckCUhpRSlGgVTRQBaBZHQJLxMFHJ9y91fZQoaAZoCWgPQwi7ufjb3lxyQJSGlFKUaBVNlwFoFkdAkvGeVs1sL3V9lChoBmgJaA9DCEOs/gjDRHJAlIaUUpRoFU0jAWgWR0CS80+mFajfdX2UKGgGaAloD0MIPzc0ZSeVbUCUhpRSlGgVTV0BaBZHQJLzjyVfNRp1fZQoaAZoCWgPQwjY1eQpK69uQJSGlFKUaBVNQQFoFkdAkvOuRPoFFHV9lChoBmgJaA9DCD1GeeblyGtAlIaUUpRoFU1BAWgWR0CS9cf0Eov0dX2UKGgGaAloD0MImSuDaoMKcUCUhpRSlGgVTRgBaBZHQJL10V32VVx1fZQoaAZoCWgPQwgclgZ+lFRxQJSGlFKUaBVNTQFoFkdAkvYZFgDzRXV9lChoBmgJaA9DCPON6J61QXFAlIaUUpRoFU22AWgWR0CS9iiaRZEEdX2UKGgGaAloD0MIQx7BjVRYc0CUhpRSlGgVTSEBaBZHQJL2WQtBfKJ1fZQoaAZoCWgPQwhIwr6dxP5xQJSGlFKUaBVNewFoFkdAkvaKFyq+8HV9lChoBmgJaA9DCBXkZyOXpXFAlIaUUpRoFU0TAWgWR0CS9zQNTcZcdX2UKGgGaAloD0MIZ9e9FYn3bkCUhpRSlGgVTTcBaBZHQJL4GRKYiPh1fZQoaAZoCWgPQwjUKCSZ1TRzQJSGlFKUaBVNPQFoFkdAkvjiVGCqZXV9lChoBmgJaA9DCNgsl40O03JAlIaUUpRoFU1IAWgWR0CS+d9KmKqGdX2UKGgGaAloD0MIiXrBpzmNa0CUhpRSlGgVTTIBaBZHQJL6JDhLoOh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2ee7fe11f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2ee7fe1280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2ee7fe1310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2ee7fe13a0>", "_build": "<function ActorCriticPolicy._build at 0x7f2ee7fe1430>", "forward": "<function ActorCriticPolicy.forward at 0x7f2ee7fe14c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2ee7fe1550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2ee7fe15e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2ee7fe1670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2ee7fe1700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2ee7fe1790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2ee7fe1820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2ee7fd8e70>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677095054117666194, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABNuhb4SGiQ/f+CgPrZZnr6sdTq+H0+bPgAAAAAAAAAA6gt4vi/OIT+zP2k+ikfFvu7Plb6NcKw+AAAAAAAAAABTa0A++8N+P+iB1D55t9K+5TJwPo6iPz4AAAAAAAAAAE3dOT6+Ttg+OgkYvg/Eur67X6W9k2TRvQAAAAAAAAAAZgw6vVX7Sz76OBy9p4qevuzYzjuMBIu9AAAAAAAAAAAAmqG9FHjEPtXNwT1zTpG+U5SbPbrZgbwAAAAAAAAAAM06AL1MW5A/raR6vamYyb7dSK6882a9vAAAAAAAAAAAADZyPOHIsrq7Uli6WnVPtf+9srg9TXc5AACAPwAAgD9N2RU+HUuoP/JYGj9ZXt6+Oit6PuwHyD4AAAAAAAAAAGZay7yf9sW7DPIVu5Uqlzws6h09lhV/vQAAgD8AAIA/aI6DvqQWQz/Qp2Y+icmqvr6IR75vGD0+AAAAAAAAAABzFo09ISAMPzXVUb6xWK6+rGu8vR5jRbwAAAAAAAAAAM2iVj1khUA+VoXaPA5Ljr7v5gq8YhPZOQAAAAAAAAAAzXDgu8xI3j4do3g9UL2IvogMIjzA8fw8AAAAAAAAAABaIKY9j8Z8uohrjblmsqky1kicumdmojgAAAAAAAAAAGY+xzvQCEA/U4GbPWQ5nr6bzwI94HR/PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVThAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqRYRxeTncECUhpRSlIwBbJRNDwGMAXSUR0CdmKBTn7pFdX2UKGgGaAloD0MIzCVV282kYUCUhpRSlGgVTegDaBZHQJ2Y3K6nR9h1fZQoaAZoCWgPQwi3eeOk8NhyQJSGlFKUaBVNDQFoFkdAnZoc23rleXV9lChoBmgJaA9DCEt0llkEO3BAlIaUUpRoFUvsaBZHQJ2aivxH5Jt1fZQoaAZoCWgPQwjptkQu+FdxQJSGlFKUaBVL6mgWR0CdmxISUTtcdX2UKGgGaAloD0MIC9XNxV8WckCUhpRSlGgVS/hoFkdAnZsSXlbNbHV9lChoBmgJaA9DCJT5R98kWW9AlIaUUpRoFU0MAWgWR0CdmyajesPrdX2UKGgGaAloD0MIrROX49VdcUCUhpRSlGgVS/doFkdAnZuwvYe1bHV9lChoBmgJaA9DCNXPm4pUuHNAlIaUUpRoFUvwaBZHQJ2b4skIHC51fZQoaAZoCWgPQwi9NEWA06RwQJSGlFKUaBVNEwFoFkdAnZ2uuV5a/3V9lChoBmgJaA9DCJPDJ52IzXFAlIaUUpRoFUvraBZHQJ2gBqXWvr51fZQoaAZoCWgPQwhS8BRyJd5uQJSGlFKUaBVL9mgWR0CdoBVoHs1LdX2UKGgGaAloD0MIZ0Y/Gk55cUCUhpRSlGgVTRcBaBZHQJ2ghtFa0Qd1fZQoaAZoCWgPQwisOqsFtjtwQJSGlFKUaBVNDgFoFkdAnaDz1oQFtHV9lChoBmgJaA9DCEvIBz0bAm9AlIaUUpRoFU0FAWgWR0CdoWMpPRAsdX2UKGgGaAloD0MIbHu7JbncckCUhpRSlGgVTQMBaBZHQJ2jMvRJEpl1fZQoaAZoCWgPQwi9OPHVjr1tQJSGlFKUaBVNHAFoFkdAnaQ1VHWjGnV9lChoBmgJaA9DCCQLmMBtJ3JAlIaUUpRoFUv9aBZHQJ2k3xVhkRV1fZQoaAZoCWgPQwhqFf2h2ddyQJSGlFKUaBVNPAFoFkdAnaVVrEcbSHV9lChoBmgJaA9DCCsyOiBJb3BAlIaUUpRoFUv5aBZHQJ2lV4jbBXV1fZQoaAZoCWgPQwhkeOxn8SlxQJSGlFKUaBVNHAFoFkdAnaW+cMEzPHV9lChoBmgJaA9DCGXHRiDewXJAlIaUUpRoFUv7aBZHQJ2mbFo+Ofd1fZQoaAZoCWgPQwif6LrwQwVxQJSGlFKUaBVNFQFoFkdAnadD0Yj0MHV9lChoBmgJaA9DCGiWBKipj3FAlIaUUpRoFU0tAWgWR0Cdp3kK/mDEdX2UKGgGaAloD0MIjL0XX3SpcUCUhpRSlGgVTTgBaBZHQJ2n+vJRwZR1fZQoaAZoCWgPQwhOJm4VxPRxQJSGlFKUaBVL+mgWR0CdqHdadMCcdX2UKGgGaAloD0MIq5hKP+HHcUCUhpRSlGgVS+9oFkdAnaow7PppvnV9lChoBmgJaA9DCEuPpnpy1HBAlIaUUpRoFUv/aBZHQJ2q7ZJ04ip1fZQoaAZoCWgPQwj/I9OhU/dxQJSGlFKUaBVNCQFoFkdAnazh7NSqEXV9lChoBmgJaA9DCE5iEFh5pHFAlIaUUpRoFUvpaBZHQJ2tRzmwJPZ1fZQoaAZoCWgPQwhdhv90Q4FxQJSGlFKUaBVNLgFoFkdAna14p6QeWHV9lChoBmgJaA9DCNHJUuv9/nBAlIaUUpRoFU04AWgWR0Cdrii/O+qSdX2UKGgGaAloD0MIi+HqAIhCckCUhpRSlGgVS+BoFkdAna6icslLOHV9lChoBmgJaA9DCIRiK2ja1HFAlIaUUpRoFU0EAWgWR0Cdrrc9nscAdX2UKGgGaAloD0MItW0YBQHIcUCUhpRSlGgVS/NoFkdAna7guyu6mXV9lChoBmgJaA9DCNV46SYxrnBAlIaUUpRoFUv3aBZHQJ2vwm8dxQ11fZQoaAZoCWgPQwjNIamF0tRwQJSGlFKUaBVNFQFoFkdAna/T3Ehq03V9lChoBmgJaA9DCJROJJhqeW5AlIaUUpRoFU0iAWgWR0Cdr+xo7FKkdX2UKGgGaAloD0MIjQ3d7E9jckCUhpRSlGgVS/1oFkdAnbBo/eLvTnV9lChoBmgJaA9DCI81I4MctXJAlIaUUpRoFUvzaBZHQJ2wl7NSqER1fZQoaAZoCWgPQwjekhywq2NtQJSGlFKUaBVL92gWR0CdsQGD+R5kdX2UKGgGaAloD0MIVYmyt5TgcUCUhpRSlGgVTRQBaBZHQJ2xEHQhOgx1fZQoaAZoCWgPQwjxtz1BYqluQJSGlFKUaBVL7GgWR0CdsjNp/PPcdX2UKGgGaAloD0MIK2wGuCDmckCUhpRSlGgVTRoBaBZHQJ2zAsg+yJN1fZQoaAZoCWgPQwirBIvD2VBxQJSGlFKUaBVL+GgWR0Cds7oxYaHcdX2UKGgGaAloD0MIx9eeWRIAcUCUhpRSlGgVS/loFkdAnbQ5yZKFqXV9lChoBmgJaA9DCNU+HY+ZkXFAlIaUUpRoFUvqaBZHQJ20bJ+2E011fZQoaAZoCWgPQwgwgzEiUUxwQJSGlFKUaBVL8mgWR0CdtUfp2U0OdX2UKGgGaAloD0MIx735DZNib0CUhpRSlGgVTSsBaBZHQJ21obQ1JlJ1fZQoaAZoCWgPQwi05PG0vFJzQJSGlFKUaBVNDAFoFkdAnbZoTTOPenV9lChoBmgJaA9DCHXMecZ+1HJAlIaUUpRoFUvhaBZHQJ223dgv1151fZQoaAZoCWgPQwjH1F3ZhZlzQJSGlFKUaBVNAQFoFkdAnbchRAKOUHV9lChoBmgJaA9DCNKrAUrD/HJAlIaUUpRoFUv/aBZHQJ23LCgsbvR1fZQoaAZoCWgPQwiLa3wmu8tyQJSGlFKUaBVL+WgWR0Cdt9CHRCyAdX2UKGgGaAloD0MIOEnzx7SOcECUhpRSlGgVTVIBaBZHQJ24QAaNuLt1fZQoaAZoCWgPQwjv4ZLjDlByQJSGlFKUaBVNFQFoFkdAnbky5I6KcnV9lChoBmgJaA9DCDWyKy2jAHJAlIaUUpRoFU0gAWgWR0CduW5byH2zdX2UKGgGaAloD0MIC5bqAt7Lb0CUhpRSlGgVTRUBaBZHQJ26kh2W6bx1fZQoaAZoCWgPQwhVoYFYNuBwQJSGlFKUaBVL6WgWR0Cdu1ueBg/kdX2UKGgGaAloD0MI4iNiSmTQcECUhpRSlGgVTS0BaBZHQJ28O/vfCQ91fZQoaAZoCWgPQwjpR8Mps4xyQJSGlFKUaBVNFwFoFkdAnbxSGFi8WnV9lChoBmgJaA9DCNnPYinStHFAlIaUUpRoFU0IAWgWR0CdvIehPCVKdX2UKGgGaAloD0MIqvBnePOnc0CUhpRSlGgVS9xoFkdAnb1edGy5Z3V9lChoBmgJaA9DCLyWkA/6rG1AlIaUUpRoFUvwaBZHQJ29hqFh5Pd1fZQoaAZoCWgPQwiEnWLVYAZzQJSGlFKUaBVNGgFoFkdAnb3YJVsDXHV9lChoBmgJaA9DCMqNImtN23BAlIaUUpRoFU0YAWgWR0CdvhVRDTjOdX2UKGgGaAloD0MI0XmNXaJJcECUhpRSlGgVS+toFkdAnb69vGZNPHV9lChoBmgJaA9DCDElkuild3JAlIaUUpRoFU0CAWgWR0CdvrvgFX7tdX2UKGgGaAloD0MIvK302iw8cUCUhpRSlGgVTRUBaBZHQJ2/RrsSkCV1fZQoaAZoCWgPQwgL1GLwMPRvQJSGlFKUaBVL+WgWR0Cdv4I/JNj9dX2UKGgGaAloD0MIG9gqwSL0ckCUhpRSlGgVS+loFkdAncAqRuCPIXV9lChoBmgJaA9DCLka2ZUWzHNAlIaUUpRoFU0aAWgWR0CdwVB/I8yOdX2UKGgGaAloD0MIt0Htt7aUcECUhpRSlGgVTREBaBZHQJ3CjAvcrRV1fZQoaAZoCWgPQwjAWyBBcclyQJSGlFKUaBVL9GgWR0Cdw2EDyOJddX2UKGgGaAloD0MIc4QM5JlzcECUhpRSlGgVTREBaBZHQJ3DcEwFkhB1fZQoaAZoCWgPQwhwJNBgU7FxQJSGlFKUaBVL9WgWR0Cdw4WmgrYodX2UKGgGaAloD0MI6iRbXc6Fb0CUhpRSlGgVS/poFkdAncT9roGIK3V9lChoBmgJaA9DCNpxw++mPHFAlIaUUpRoFU0hAWgWR0CdxVEqDsdDdX2UKGgGaAloD0MIX3089F2VbkCUhpRSlGgVS/BoFkdAncV6LXL/0nV9lChoBmgJaA9DCAFRMGOKpW5AlIaUUpRoFUv5aBZHQJ3FgwztTk11fZQoaAZoCWgPQwhDAHDsmcJwQJSGlFKUaBVL7GgWR0CdxhE87p3YdX2UKGgGaAloD0MIF/IIbqQ1cUCUhpRSlGgVTRoBaBZHQJ3GN/4Irvt1fZQoaAZoCWgPQwisjEY+L/dwQJSGlFKUaBVL8GgWR0CdxsSqU/wBdX2UKGgGaAloD0MIZd8Vwf/Sc0CUhpRSlGgVTRIBaBZHQJ3HI4EOiFl1fZQoaAZoCWgPQwhpq5LI/qxyQJSGlFKUaBVL62gWR0Cdx43NLUTddX2UKGgGaAloD0MIbVM8LmolckCUhpRSlGgVTSsBaBZHQJ3IqE8JUo91fZQoaAZoCWgPQwhH41C/C4BvQJSGlFKUaBVL/WgWR0CdyT/MGHHndX2UKGgGaAloD0MIwha7fVazb0CUhpRSlGgVS+doFkdAncp0uYhManV9lChoBmgJaA9DCN7lIr6Tbm9AlIaUUpRoFUv4aBZHQJ3LIBxPwd91fZQoaAZoCWgPQwiqZtZSgJJxQJSGlFKUaBVNBQFoFkdAnculsHjZMHV9lChoBmgJaA9DCL6ghQQMXnFAlIaUUpRoFU0lAWgWR0Cdy8SIgvDhdX2UKGgGaAloD0MIoiQk0vYkckCUhpRSlGgVS+doFkdAncxLELpiZ3V9lChoBmgJaA9DCFbvcDs0kXJAlIaUUpRoFUvlaBZHQJ3May+pOvd1fZQoaAZoCWgPQwhm9KPhlMFwQJSGlFKUaBVNBgFoFkdAncz1Fpfx+nV9lChoBmgJaA9DCHFWRE20U3JAlIaUUpRoFUv6aBZHQJ3NAGwA2ht1fZQoaAZoCWgPQwjPMotQbDdcQJSGlFKUaBVN6ANoFkdAnc1v4EfT1HV9lChoBmgJaA9DCBhbCHJQKnFAlIaUUpRoFUv5aBZHQJ3Nf20zCUJ1fZQoaAZoCWgPQwjTvySVaRJxQJSGlFKUaBVL52gWR0CdzaWDpTuOdX2UKGgGaAloD0MIc2N6wpIKckCUhpRSlGgVS+ZoFkdAnc5O3UhFE3V9lChoBmgJaA9DCHE6yVaXJXFAlIaUUpRoFU0FAWgWR0Cdzrc6eXiSdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 230, "n_steps": 2048, "gamma": 0.998, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:21c468f1556760ef893273b46d1445782e51304f6d719c8048d67a88ef6a1a36
3
- size 147424
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27555c8bc795eda035ab65d82aeb42c6738b5c97518aa155dc1dbc4a2cb9ad63
3
+ size 147356
ppo-LunarLander-v2/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8efef21f70>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8efef26040>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8efef260d0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8efef26160>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f8efef261f0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f8efef26280>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8efef26310>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8efef263a0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f8efef26430>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8efef264c0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8efef26550>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8efef265e0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc_data object at 0x7f8efef24120>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
@@ -43,12 +43,12 @@
43
  "_np_random": null
44
  },
45
  "n_envs": 16,
46
- "num_timesteps": 1015808,
47
- "_total_timesteps": 1000000,
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
- "start_time": 1676998282592956386,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
@@ -57,7 +57,7 @@
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMB4C760HEc+oH7JPTvqXL7ineW7rSRXPQAAAAAAAAAA2u7CvhTAZT/m/2Q+IyarvqEzpb779n8+AAAAAAAAAADmTEa9FKaFuhKy4jQuHGwwzL4hu3YTN7QAAIA/AACAP80cujwoa40+hpPpvGdOZb7B6Qy9WcVKvQAAAAAAAAAAZrCkPZyWlT7oDXO9Moo2vrl2Gb36Bq89AAAAAAAAAAAzuUs8a04QP/6jkb3akIu+k3MlvEuBhb0AAAAAAAAAAObAKL1nIFs+Kw6Hve5bZ76ezPK8L3ApvQAAAAAAAAAAMzYmvYSf7T4qhg89tRl4viECurieK4I8AAAAAAAAAAAApN074fKXug9IPLagvx+x4WMAu5ACaDUAAIA/AACAP2YuaL3Bgb+8ifwHvIVSIT1Wcwm+jfpbugAAgD8AAIA/M1EMvZ+2kTwDXeK9gE1zvnZq/bxQL+g9AAAAAAAAAABAVsq9GMKIP7atDL42ULa+WRnyvc1UdD0AAAAAAAAAAPNVEb4bPNc9MZ45PUotMb4WxoK9Wsu5PQAAAAAAAAAAZnzKvLgbhbvVjsS5J1iIPEl40DwjPWm9AACAPwAAgD9m5oC9g+U3PRLkCz6q0i++qPODPZ1y3b0AAAAAAAAAAGADHz6U8X0/N2AfPn5ssb4DCE4+UCklvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
@@ -67,24 +67,24 @@
67
  "_episode_num": 0,
68
  "use_sde": false,
69
  "sde_sample_freq": -1,
70
- "_current_progress_remaining": -0.015808000000000044,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
- ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+3WnO4+UcECUhpRSlIwBbJRNNAGMAXSUR0CSg5eNDMNddX2UKGgGaAloD0MImNwostYgb0CUhpRSlGgVTWoBaBZHQJKD66kIomZ1fZQoaAZoCWgPQwgqcR3jSqRxQJSGlFKUaBVNUQFoFkdAkoRdt65Xl3V9lChoBmgJaA9DCFcFajF4f3BAlIaUUpRoFU1DAWgWR0CSmLWilBQfdX2UKGgGaAloD0MIu38sRAeHcECUhpRSlGgVTVQBaBZHQJKZDj4pMHt1fZQoaAZoCWgPQwiWk1D6Ql9yQJSGlFKUaBVNJQFoFkdAkpmoI8hcJXV9lChoBmgJaA9DCPOuesC8vWxAlIaUUpRoFU2AAWgWR0CSmeYNiH6/dX2UKGgGaAloD0MIVUs6ysGRbECUhpRSlGgVTVwBaBZHQJKaoWXTmXB1fZQoaAZoCWgPQwhdbFopxIpyQJSGlFKUaBVNQwFoFkdAkpq/Jq7AcnV9lChoBmgJaA9DCCHkvP8P4m5AlIaUUpRoFU1nAWgWR0CSm77p3X7MdX2UKGgGaAloD0MIgzEiUWhybkCUhpRSlGgVTUABaBZHQJKb9NwiqyZ1fZQoaAZoCWgPQwgKn62DA1NtQJSGlFKUaBVNWAFoFkdAkp6/3N9piHV9lChoBmgJaA9DCFPMQdARwnBAlIaUUpRoFU21AWgWR0CSoJ9/BnBddX2UKGgGaAloD0MI43FRLWKkcUCUhpRSlGgVTVkBaBZHQJKhMqgAZKp1fZQoaAZoCWgPQwj7yoP0VLxwQJSGlFKUaBVNRQFoFkdAkqN1gc94eXV9lChoBmgJaA9DCK3e4XYoSnJAlIaUUpRoFU1nAWgWR0CSo4Q/5ckddX2UKGgGaAloD0MIRBSTN0CDckCUhpRSlGgVTUkBaBZHQJKkiCuloDh1fZQoaAZoCWgPQwgpCYm0DdFsQJSGlFKUaBVNXgFoFkdAkqUnQID5kHV9lChoBmgJaA9DCFTle0ai7W1AlIaUUpRoFU01AWgWR0CSpXLgXMyKdX2UKGgGaAloD0MIkEqxo3GJbkCUhpRSlGgVTWUBaBZHQJKmiPjn3cp1fZQoaAZoCWgPQwj+7h015sNwQJSGlFKUaBVNKwFoFkdAkqbB6nivPnV9lChoBmgJaA9DCFch5ScVjXFAlIaUUpRoFU1UAWgWR0CSp2ZBLPD6dX2UKGgGaAloD0MIB13Cobe/cECUhpRSlGgVTV0BaBZHQJKosEdNnGt1fZQoaAZoCWgPQwia7Qp98ARyQJSGlFKUaBVNYwFoFkdAkqpuxSpBHHV9lChoBmgJaA9DCD+MEB4t93BAlIaUUpRoFU2LAWgWR0CSrsK6FuejdX2UKGgGaAloD0MI0LhwIGSCcECUhpRSlGgVTa8BaBZHQJKu8xO+IuZ1fZQoaAZoCWgPQwh1x2Kb1AxxQJSGlFKUaBVNQAFoFkdAkq9Bu89Oh3V9lChoBmgJaA9DCGssYW2MUWxAlIaUUpRoFU02AWgWR0CSsSP1L8JldX2UKGgGaAloD0MIEqJ8QQuqcECUhpRSlGgVTUwBaBZHQJKxu7ROUMZ1fZQoaAZoCWgPQwhJaTaPQwBuQJSGlFKUaBVNPQFoFkdAkrNFbaAWi3V9lChoBmgJaA9DCJnyIaga6G5AlIaUUpRoFU1oAWgWR0CStRom5UcXdX2UKGgGaAloD0MI4UbKFklTb0CUhpRSlGgVTU0BaBZHQJK1RGkN4JN1fZQoaAZoCWgPQwhgAUwZOAFxQJSGlFKUaBVNTgFoFkdAkrWHkcS5AnV9lChoBmgJaA9DCLWLaaa7kHFAlIaUUpRoFU2LAWgWR0CStzgCfYjCdX2UKGgGaAloD0MItAQZARUCb0CUhpRSlGgVTTQBaBZHQJK3Q9r433p1fZQoaAZoCWgPQwiDiqpfaQ5xQJSGlFKUaBVNVQFoFkdAkrduZG8VYnV9lChoBmgJaA9DCJ6zBYQWe3JAlIaUUpRoFU1rAWgWR0CSt6iMo+fRdX2UKGgGaAloD0MImC8vwD7ncECUhpRSlGgVTX4BaBZHQJK4EREnb7F1fZQoaAZoCWgPQwjtmSUBqpRwQJSGlFKUaBVNKQFoFkdAkrgZBLPD53V9lChoBmgJaA9DCHZwsDexIHFAlIaUUpRoFU0wAWgWR0CSuqz/p+tsdX2UKGgGaAloD0MIFy1A2+pabkCUhpRSlGgVTS8BaBZHQJK620BwMph1fZQoaAZoCWgPQwi/LO3U3GBxQJSGlFKUaBVNPAFoFkdAkrr8L0BfbHV9lChoBmgJaA9DCLEzhc5rS29AlIaUUpRoFU1AAWgWR0CSvI7JnxrjdX2UKGgGaAloD0MIY4BEEyiPcECUhpRSlGgVTUIBaBZHQJK9BqmCROl1fZQoaAZoCWgPQwjL8+Du7L5wQJSGlFKUaBVNEANoFkdAkr2t/rjYI3V9lChoBmgJaA9DCPBN02eHUHBAlIaUUpRoFU1FAWgWR0CSvnwz+FURdX2UKGgGaAloD0MIeV2/YLcxbUCUhpRSlGgVTTEBaBZHQJK/zlijL0V1fZQoaAZoCWgPQwgGZoUiXUtwQJSGlFKUaBVNSwFoFkdAksBijgydnXV9lChoBmgJaA9DCA01CkkmmXBAlIaUUpRoFU1OAWgWR0CSwKdTo+wDdX2UKGgGaAloD0MI8MLWbOVybECUhpRSlGgVTUkBaBZHQJLVu25QP7N1fZQoaAZoCWgPQwjJAFDFjaRsQJSGlFKUaBVNPgFoFkdAktXGIXTEznV9lChoBmgJaA9DCE/MejHUh3FAlIaUUpRoFU0xAWgWR0CS1c/+KjzqdX2UKGgGaAloD0MIAFZHjvTdbECUhpRSlGgVTT0BaBZHQJLWRK9PDYR1fZQoaAZoCWgPQwhksU0qmodvQJSGlFKUaBVNXQFoFkdAktZlkQPI4nV9lChoBmgJaA9DCEaU9gafTnFAlIaUUpRoFU2KAWgWR0CS1/QdjoZAdX2UKGgGaAloD0MIAIv8+iGjcUCUhpRSlGgVTR8BaBZHQJLYKxVyWAx1fZQoaAZoCWgPQwhGtYgo5klyQJSGlFKUaBVNKwFoFkdAkthbE9+w1XV9lChoBmgJaA9DCFluaTWkkmxAlIaUUpRoFU0lAWgWR0CS2HFxGUfQdX2UKGgGaAloD0MI3GPpQ5fDbECUhpRSlGgVTVoBaBZHQJLb4W0qpcZ1fZQoaAZoCWgPQwg1JO6x9OdwQJSGlFKUaBVNVAFoFkdAktw4aDPGAHV9lChoBmgJaA9DCKK1os2xrXBAlIaUUpRoFU07AWgWR0CS3PtZV4ordX2UKGgGaAloD0MIRrHc0iqRckCUhpRSlGgVTV4BaBZHQJLdgGRmseZ1fZQoaAZoCWgPQwj18dB3N/VxQJSGlFKUaBVNQAFoFkdAkt7PQrtmc3V9lChoBmgJaA9DCB+hZkjVXnFAlIaUUpRoFU1DAWgWR0CS4C2KVII4dX2UKGgGaAloD0MIeZRKeEJSbUCUhpRSlGgVTVYBaBZHQJLg09Pk7wN1fZQoaAZoCWgPQwiXH7jKkwFxQJSGlFKUaBVNJAFoFkdAkuHxBJI1+HV9lChoBmgJaA9DCLjoZKk1onBAlIaUUpRoFU1BAWgWR0CS4nHdoFmndX2UKGgGaAloD0MI4WHaN/cJc0CUhpRSlGgVTU0BaBZHQJLjHTYukDZ1fZQoaAZoCWgPQwi4lPPFXt5yQJSGlFKUaBVNagFoFkdAkuTG6f8Mu3V9lChoBmgJaA9DCAsL7gc8YHBAlIaUUpRoFU0+AWgWR0CS5hEeQuEmdX2UKGgGaAloD0MIj+OHSiMTbUCUhpRSlGgVTTMBaBZHQJLmYoLG7z11fZQoaAZoCWgPQwhblq/LMHNwQJSGlFKUaBVNfAFoFkdAkuZyZF5OanV9lChoBmgJaA9DCAwh5/1/OWxAlIaUUpRoFU1XAWgWR0CS5+1aW5YpdX2UKGgGaAloD0MIWHA/4EH8cECUhpRSlGgVTXEBaBZHQJLo1XjlxOt1fZQoaAZoCWgPQwg7Vik904MtQJSGlFKUaBVL+mgWR0CS6Yj8k2P1dX2UKGgGaAloD0MI1v85zFfUcUCUhpRSlGgVTSgBaBZHQJLqzU+cH4Z1fZQoaAZoCWgPQwgxQ+OJINpvQJSGlFKUaBVNMQFoFkdAkurm16Vt43V9lChoBmgJaA9DCGlwW1v4/XBAlIaUUpRoFU03AWgWR0CS7MqubI91dX2UKGgGaAloD0MIeei7W1kBbECUhpRSlGgVTSQBaBZHQJLtMI3R5Tt1fZQoaAZoCWgPQwibdcb3hVFxQJSGlFKUaBVNLAFoFkdAku6ao60Y0nV9lChoBmgJaA9DCH8yxofZgz9AlIaUUpRoFU0ZAWgWR0CS7rU4JeE7dX2UKGgGaAloD0MI4pANpEtqcECUhpRSlGgVTSEBaBZHQJLvQgB91EF1fZQoaAZoCWgPQwjKplzhHU1wQJSGlFKUaBVNKgFoFkdAku/wXuVopXV9lChoBmgJaA9DCEjcY+lD/GxAlIaUUpRoFU0qAWgWR0CS8OulGgBcdX2UKGgGaAloD0MIs0KR7ie2ckCUhpRSlGgVTRQBaBZHQJLxMFHJ9y91fZQoaAZoCWgPQwi7ufjb3lxyQJSGlFKUaBVNlwFoFkdAkvGeVs1sL3V9lChoBmgJaA9DCEOs/gjDRHJAlIaUUpRoFU0jAWgWR0CS80+mFajfdX2UKGgGaAloD0MIPzc0ZSeVbUCUhpRSlGgVTV0BaBZHQJLzjyVfNRp1fZQoaAZoCWgPQwjY1eQpK69uQJSGlFKUaBVNQQFoFkdAkvOuRPoFFHV9lChoBmgJaA9DCD1GeeblyGtAlIaUUpRoFU1BAWgWR0CS9cf0Eov0dX2UKGgGaAloD0MImSuDaoMKcUCUhpRSlGgVTRgBaBZHQJL10V32VVx1fZQoaAZoCWgPQwgclgZ+lFRxQJSGlFKUaBVNTQFoFkdAkvYZFgDzRXV9lChoBmgJaA9DCPON6J61QXFAlIaUUpRoFU22AWgWR0CS9iiaRZEEdX2UKGgGaAloD0MIQx7BjVRYc0CUhpRSlGgVTSEBaBZHQJL2WQtBfKJ1fZQoaAZoCWgPQwhIwr6dxP5xQJSGlFKUaBVNewFoFkdAkvaKFyq+8HV9lChoBmgJaA9DCBXkZyOXpXFAlIaUUpRoFU0TAWgWR0CS9zQNTcZcdX2UKGgGaAloD0MIZ9e9FYn3bkCUhpRSlGgVTTcBaBZHQJL4GRKYiPh1fZQoaAZoCWgPQwjUKCSZ1TRzQJSGlFKUaBVNPQFoFkdAkvjiVGCqZXV9lChoBmgJaA9DCNgsl40O03JAlIaUUpRoFU1IAWgWR0CS+d9KmKqGdX2UKGgGaAloD0MIiXrBpzmNa0CUhpRSlGgVTTIBaBZHQJL6JDhLoOh1ZS4="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
  },
79
- "_n_updates": 248,
80
- "n_steps": 1024,
81
- "gamma": 0.999,
82
  "gae_lambda": 0.98,
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
- "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2ee7fe11f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2ee7fe1280>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2ee7fe1310>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2ee7fe13a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2ee7fe1430>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2ee7fe14c0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2ee7fe1550>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2ee7fe15e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2ee7fe1670>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2ee7fe1700>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2ee7fe1790>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2ee7fe1820>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f2ee7fd8e70>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
43
  "_np_random": null
44
  },
45
  "n_envs": 16,
46
+ "num_timesteps": 1507328,
47
+ "_total_timesteps": 1500000,
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
+ "start_time": 1677095054117666194,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
 
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABNuhb4SGiQ/f+CgPrZZnr6sdTq+H0+bPgAAAAAAAAAA6gt4vi/OIT+zP2k+ikfFvu7Plb6NcKw+AAAAAAAAAABTa0A++8N+P+iB1D55t9K+5TJwPo6iPz4AAAAAAAAAAE3dOT6+Ttg+OgkYvg/Eur67X6W9k2TRvQAAAAAAAAAAZgw6vVX7Sz76OBy9p4qevuzYzjuMBIu9AAAAAAAAAAAAmqG9FHjEPtXNwT1zTpG+U5SbPbrZgbwAAAAAAAAAAM06AL1MW5A/raR6vamYyb7dSK6882a9vAAAAAAAAAAAADZyPOHIsrq7Uli6WnVPtf+9srg9TXc5AACAPwAAgD9N2RU+HUuoP/JYGj9ZXt6+Oit6PuwHyD4AAAAAAAAAAGZay7yf9sW7DPIVu5Uqlzws6h09lhV/vQAAgD8AAIA/aI6DvqQWQz/Qp2Y+icmqvr6IR75vGD0+AAAAAAAAAABzFo09ISAMPzXVUb6xWK6+rGu8vR5jRbwAAAAAAAAAAM2iVj1khUA+VoXaPA5Ljr7v5gq8YhPZOQAAAAAAAAAAzXDgu8xI3j4do3g9UL2IvogMIjzA8fw8AAAAAAAAAABaIKY9j8Z8uohrjblmsqky1kicumdmojgAAAAAAAAAAGY+xzvQCEA/U4GbPWQ5nr6bzwI94HR/PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
 
67
  "_episode_num": 0,
68
  "use_sde": false,
69
  "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.004885333333333408,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVThAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqRYRxeTncECUhpRSlIwBbJRNDwGMAXSUR0CdmKBTn7pFdX2UKGgGaAloD0MIzCVV282kYUCUhpRSlGgVTegDaBZHQJ2Y3K6nR9h1fZQoaAZoCWgPQwi3eeOk8NhyQJSGlFKUaBVNDQFoFkdAnZoc23rleXV9lChoBmgJaA9DCEt0llkEO3BAlIaUUpRoFUvsaBZHQJ2aivxH5Jt1fZQoaAZoCWgPQwjptkQu+FdxQJSGlFKUaBVL6mgWR0CdmxISUTtcdX2UKGgGaAloD0MIC9XNxV8WckCUhpRSlGgVS/hoFkdAnZsSXlbNbHV9lChoBmgJaA9DCJT5R98kWW9AlIaUUpRoFU0MAWgWR0CdmyajesPrdX2UKGgGaAloD0MIrROX49VdcUCUhpRSlGgVS/doFkdAnZuwvYe1bHV9lChoBmgJaA9DCNXPm4pUuHNAlIaUUpRoFUvwaBZHQJ2b4skIHC51fZQoaAZoCWgPQwi9NEWA06RwQJSGlFKUaBVNEwFoFkdAnZ2uuV5a/3V9lChoBmgJaA9DCJPDJ52IzXFAlIaUUpRoFUvraBZHQJ2gBqXWvr51fZQoaAZoCWgPQwhS8BRyJd5uQJSGlFKUaBVL9mgWR0CdoBVoHs1LdX2UKGgGaAloD0MIZ0Y/Gk55cUCUhpRSlGgVTRcBaBZHQJ2ghtFa0Qd1fZQoaAZoCWgPQwisOqsFtjtwQJSGlFKUaBVNDgFoFkdAnaDz1oQFtHV9lChoBmgJaA9DCEvIBz0bAm9AlIaUUpRoFU0FAWgWR0CdoWMpPRAsdX2UKGgGaAloD0MIbHu7JbncckCUhpRSlGgVTQMBaBZHQJ2jMvRJEpl1fZQoaAZoCWgPQwi9OPHVjr1tQJSGlFKUaBVNHAFoFkdAnaQ1VHWjGnV9lChoBmgJaA9DCCQLmMBtJ3JAlIaUUpRoFUv9aBZHQJ2k3xVhkRV1fZQoaAZoCWgPQwhqFf2h2ddyQJSGlFKUaBVNPAFoFkdAnaVVrEcbSHV9lChoBmgJaA9DCCsyOiBJb3BAlIaUUpRoFUv5aBZHQJ2lV4jbBXV1fZQoaAZoCWgPQwhkeOxn8SlxQJSGlFKUaBVNHAFoFkdAnaW+cMEzPHV9lChoBmgJaA9DCGXHRiDewXJAlIaUUpRoFUv7aBZHQJ2mbFo+Ofd1fZQoaAZoCWgPQwif6LrwQwVxQJSGlFKUaBVNFQFoFkdAnadD0Yj0MHV9lChoBmgJaA9DCGiWBKipj3FAlIaUUpRoFU0tAWgWR0Cdp3kK/mDEdX2UKGgGaAloD0MIjL0XX3SpcUCUhpRSlGgVTTgBaBZHQJ2n+vJRwZR1fZQoaAZoCWgPQwhOJm4VxPRxQJSGlFKUaBVL+mgWR0CdqHdadMCcdX2UKGgGaAloD0MIq5hKP+HHcUCUhpRSlGgVS+9oFkdAnaow7PppvnV9lChoBmgJaA9DCEuPpnpy1HBAlIaUUpRoFUv/aBZHQJ2q7ZJ04ip1fZQoaAZoCWgPQwj/I9OhU/dxQJSGlFKUaBVNCQFoFkdAnazh7NSqEXV9lChoBmgJaA9DCE5iEFh5pHFAlIaUUpRoFUvpaBZHQJ2tRzmwJPZ1fZQoaAZoCWgPQwhdhv90Q4FxQJSGlFKUaBVNLgFoFkdAna14p6QeWHV9lChoBmgJaA9DCNHJUuv9/nBAlIaUUpRoFU04AWgWR0Cdrii/O+qSdX2UKGgGaAloD0MIi+HqAIhCckCUhpRSlGgVS+BoFkdAna6icslLOHV9lChoBmgJaA9DCIRiK2ja1HFAlIaUUpRoFU0EAWgWR0Cdrrc9nscAdX2UKGgGaAloD0MItW0YBQHIcUCUhpRSlGgVS/NoFkdAna7guyu6mXV9lChoBmgJaA9DCNV46SYxrnBAlIaUUpRoFUv3aBZHQJ2vwm8dxQ11fZQoaAZoCWgPQwjNIamF0tRwQJSGlFKUaBVNFQFoFkdAna/T3Ehq03V9lChoBmgJaA9DCJROJJhqeW5AlIaUUpRoFU0iAWgWR0Cdr+xo7FKkdX2UKGgGaAloD0MIjQ3d7E9jckCUhpRSlGgVS/1oFkdAnbBo/eLvTnV9lChoBmgJaA9DCI81I4MctXJAlIaUUpRoFUvzaBZHQJ2wl7NSqER1fZQoaAZoCWgPQwjekhywq2NtQJSGlFKUaBVL92gWR0CdsQGD+R5kdX2UKGgGaAloD0MIVYmyt5TgcUCUhpRSlGgVTRQBaBZHQJ2xEHQhOgx1fZQoaAZoCWgPQwjxtz1BYqluQJSGlFKUaBVL7GgWR0CdsjNp/PPcdX2UKGgGaAloD0MIK2wGuCDmckCUhpRSlGgVTRoBaBZHQJ2zAsg+yJN1fZQoaAZoCWgPQwirBIvD2VBxQJSGlFKUaBVL+GgWR0Cds7oxYaHcdX2UKGgGaAloD0MIx9eeWRIAcUCUhpRSlGgVS/loFkdAnbQ5yZKFqXV9lChoBmgJaA9DCNU+HY+ZkXFAlIaUUpRoFUvqaBZHQJ20bJ+2E011fZQoaAZoCWgPQwgwgzEiUUxwQJSGlFKUaBVL8mgWR0CdtUfp2U0OdX2UKGgGaAloD0MIx735DZNib0CUhpRSlGgVTSsBaBZHQJ21obQ1JlJ1fZQoaAZoCWgPQwi05PG0vFJzQJSGlFKUaBVNDAFoFkdAnbZoTTOPenV9lChoBmgJaA9DCHXMecZ+1HJAlIaUUpRoFUvhaBZHQJ223dgv1151fZQoaAZoCWgPQwjH1F3ZhZlzQJSGlFKUaBVNAQFoFkdAnbchRAKOUHV9lChoBmgJaA9DCNKrAUrD/HJAlIaUUpRoFUv/aBZHQJ23LCgsbvR1fZQoaAZoCWgPQwiLa3wmu8tyQJSGlFKUaBVL+WgWR0Cdt9CHRCyAdX2UKGgGaAloD0MIOEnzx7SOcECUhpRSlGgVTVIBaBZHQJ24QAaNuLt1fZQoaAZoCWgPQwjv4ZLjDlByQJSGlFKUaBVNFQFoFkdAnbky5I6KcnV9lChoBmgJaA9DCDWyKy2jAHJAlIaUUpRoFU0gAWgWR0CduW5byH2zdX2UKGgGaAloD0MIC5bqAt7Lb0CUhpRSlGgVTRUBaBZHQJ26kh2W6bx1fZQoaAZoCWgPQwhVoYFYNuBwQJSGlFKUaBVL6WgWR0Cdu1ueBg/kdX2UKGgGaAloD0MI4iNiSmTQcECUhpRSlGgVTS0BaBZHQJ28O/vfCQ91fZQoaAZoCWgPQwjpR8Mps4xyQJSGlFKUaBVNFwFoFkdAnbxSGFi8WnV9lChoBmgJaA9DCNnPYinStHFAlIaUUpRoFU0IAWgWR0CdvIehPCVKdX2UKGgGaAloD0MIqvBnePOnc0CUhpRSlGgVS9xoFkdAnb1edGy5Z3V9lChoBmgJaA9DCLyWkA/6rG1AlIaUUpRoFUvwaBZHQJ29hqFh5Pd1fZQoaAZoCWgPQwiEnWLVYAZzQJSGlFKUaBVNGgFoFkdAnb3YJVsDXHV9lChoBmgJaA9DCMqNImtN23BAlIaUUpRoFU0YAWgWR0CdvhVRDTjOdX2UKGgGaAloD0MI0XmNXaJJcECUhpRSlGgVS+toFkdAnb69vGZNPHV9lChoBmgJaA9DCDElkuild3JAlIaUUpRoFU0CAWgWR0CdvrvgFX7tdX2UKGgGaAloD0MIvK302iw8cUCUhpRSlGgVTRUBaBZHQJ2/RrsSkCV1fZQoaAZoCWgPQwgL1GLwMPRvQJSGlFKUaBVL+WgWR0Cdv4I/JNj9dX2UKGgGaAloD0MIG9gqwSL0ckCUhpRSlGgVS+loFkdAncAqRuCPIXV9lChoBmgJaA9DCLka2ZUWzHNAlIaUUpRoFU0aAWgWR0CdwVB/I8yOdX2UKGgGaAloD0MIt0Htt7aUcECUhpRSlGgVTREBaBZHQJ3CjAvcrRV1fZQoaAZoCWgPQwjAWyBBcclyQJSGlFKUaBVL9GgWR0Cdw2EDyOJddX2UKGgGaAloD0MIc4QM5JlzcECUhpRSlGgVTREBaBZHQJ3DcEwFkhB1fZQoaAZoCWgPQwhwJNBgU7FxQJSGlFKUaBVL9WgWR0Cdw4WmgrYodX2UKGgGaAloD0MI6iRbXc6Fb0CUhpRSlGgVS/poFkdAncT9roGIK3V9lChoBmgJaA9DCNpxw++mPHFAlIaUUpRoFU0hAWgWR0CdxVEqDsdDdX2UKGgGaAloD0MIX3089F2VbkCUhpRSlGgVS/BoFkdAncV6LXL/0nV9lChoBmgJaA9DCAFRMGOKpW5AlIaUUpRoFUv5aBZHQJ3FgwztTk11fZQoaAZoCWgPQwhDAHDsmcJwQJSGlFKUaBVL7GgWR0CdxhE87p3YdX2UKGgGaAloD0MIF/IIbqQ1cUCUhpRSlGgVTRoBaBZHQJ3GN/4Irvt1fZQoaAZoCWgPQwisjEY+L/dwQJSGlFKUaBVL8GgWR0CdxsSqU/wBdX2UKGgGaAloD0MIZd8Vwf/Sc0CUhpRSlGgVTRIBaBZHQJ3HI4EOiFl1fZQoaAZoCWgPQwhpq5LI/qxyQJSGlFKUaBVL62gWR0Cdx43NLUTddX2UKGgGaAloD0MIbVM8LmolckCUhpRSlGgVTSsBaBZHQJ3IqE8JUo91fZQoaAZoCWgPQwhH41C/C4BvQJSGlFKUaBVL/WgWR0CdyT/MGHHndX2UKGgGaAloD0MIwha7fVazb0CUhpRSlGgVS+doFkdAncp0uYhManV9lChoBmgJaA9DCN7lIr6Tbm9AlIaUUpRoFUv4aBZHQJ3LIBxPwd91fZQoaAZoCWgPQwiqZtZSgJJxQJSGlFKUaBVNBQFoFkdAnculsHjZMHV9lChoBmgJaA9DCL6ghQQMXnFAlIaUUpRoFU0lAWgWR0Cdy8SIgvDhdX2UKGgGaAloD0MIoiQk0vYkckCUhpRSlGgVS+doFkdAncxLELpiZ3V9lChoBmgJaA9DCFbvcDs0kXJAlIaUUpRoFUvlaBZHQJ3May+pOvd1fZQoaAZoCWgPQwhm9KPhlMFwQJSGlFKUaBVNBgFoFkdAncz1Fpfx+nV9lChoBmgJaA9DCHFWRE20U3JAlIaUUpRoFUv6aBZHQJ3NAGwA2ht1fZQoaAZoCWgPQwjPMotQbDdcQJSGlFKUaBVN6ANoFkdAnc1v4EfT1HV9lChoBmgJaA9DCBhbCHJQKnFAlIaUUpRoFUv5aBZHQJ3Nf20zCUJ1fZQoaAZoCWgPQwjTvySVaRJxQJSGlFKUaBVL52gWR0CdzaWDpTuOdX2UKGgGaAloD0MIc2N6wpIKckCUhpRSlGgVS+ZoFkdAnc5O3UhFE3V9lChoBmgJaA9DCHE6yVaXJXFAlIaUUpRoFU0FAWgWR0Cdzrc6eXiSdWUu"
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
  },
79
+ "_n_updates": 230,
80
+ "n_steps": 2048,
81
+ "gamma": 0.998,
82
  "gae_lambda": 0.98,
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
+ "n_epochs": 5,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f45d879c2dd6134d11182de83ce26e46f84fbcd52d36bd1298941932d4d93b7e
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cee043b8d883b3ea2753e731462cb2bf2d355bda3de2c46075747a265b24ec08
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f9bb798f6911e1181605b9efde912460cf9fc45a6988dcb7f392b37788bd562d
3
  size 43393
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17b17c0b02c4b7f4b67b7b9558e7eb550718ea70beccdcb0bf9ee4d51f73784a
3
  size 43393
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -3,5 +3,5 @@
3
  - Stable-Baselines3: 1.7.0
4
  - PyTorch: 1.13.1+cu116
5
  - GPU Enabled: True
6
- - Numpy: 1.21.6
7
  - Gym: 0.21.0
 
3
  - Stable-Baselines3: 1.7.0
4
  - PyTorch: 1.13.1+cu116
5
  - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
  - Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 252.58525087270513, "std_reward": 23.303963387655035, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-21T17:20:21.305665"}
 
1
+ {"mean_reward": 267.03645829092324, "std_reward": 22.028726807159615, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-22T20:18:40.814469"}