Baljinnyam commited on
Commit
18e1863
·
1 Parent(s): 4f6ca3e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - mn
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: xlm-roberta-base-ner-hrl-ner-finetuning
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # xlm-roberta-base-ner-hrl-ner-finetuning
20
+
21
+ This model is a fine-tuned version of [Davlan/xlm-roberta-base-ner-hrl](https://huggingface.co/Davlan/xlm-roberta-base-ner-hrl) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.1135
24
+ - Precision: 0.9290
25
+ - Recall: 0.9367
26
+ - F1: 0.9328
27
+ - Accuracy: 0.9801
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 32
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 10
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.1534 | 1.0 | 477 | 0.0870 | 0.9001 | 0.9124 | 0.9062 | 0.9740 |
59
+ | 0.077 | 2.0 | 954 | 0.0764 | 0.9187 | 0.9321 | 0.9253 | 0.9789 |
60
+ | 0.0529 | 3.0 | 1431 | 0.0845 | 0.9178 | 0.9313 | 0.9245 | 0.9791 |
61
+ | 0.0377 | 4.0 | 1908 | 0.0805 | 0.9200 | 0.9310 | 0.9255 | 0.9795 |
62
+ | 0.0292 | 5.0 | 2385 | 0.0918 | 0.9278 | 0.9346 | 0.9312 | 0.9795 |
63
+ | 0.0204 | 6.0 | 2862 | 0.1016 | 0.9222 | 0.9323 | 0.9273 | 0.9790 |
64
+ | 0.0167 | 7.0 | 3339 | 0.1066 | 0.9271 | 0.9327 | 0.9299 | 0.9790 |
65
+ | 0.0134 | 8.0 | 3816 | 0.1088 | 0.9253 | 0.9358 | 0.9305 | 0.9797 |
66
+ | 0.0101 | 9.0 | 4293 | 0.1134 | 0.9289 | 0.9357 | 0.9323 | 0.9798 |
67
+ | 0.0079 | 10.0 | 4770 | 0.1135 | 0.9290 | 0.9367 | 0.9328 | 0.9801 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.28.1
73
+ - Pytorch 2.0.0+cu118
74
+ - Datasets 2.12.0
75
+ - Tokenizers 0.13.3