Baljinnyam
commited on
Commit
•
03875d3
1
Parent(s):
7715987
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- mn
|
4 |
+
license: mit
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: gpt-2-10000
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# gpt-2-10000
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.2551
|
25 |
+
- Precision: 0.1523
|
26 |
+
- Recall: 0.2608
|
27 |
+
- F1: 0.1923
|
28 |
+
- Accuracy: 0.9175
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 2e-05
|
48 |
+
- train_batch_size: 16
|
49 |
+
- eval_batch_size: 32
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 10
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
59 |
+
| 0.4502 | 1.0 | 477 | 0.3178 | 0.1351 | 0.2289 | 0.1699 | 0.8953 |
|
60 |
+
| 0.3283 | 2.0 | 954 | 0.3014 | 0.1227 | 0.2220 | 0.1581 | 0.8985 |
|
61 |
+
| 0.3016 | 3.0 | 1431 | 0.2768 | 0.1441 | 0.2379 | 0.1795 | 0.9077 |
|
62 |
+
| 0.2824 | 4.0 | 1908 | 0.2687 | 0.1442 | 0.2415 | 0.1806 | 0.9103 |
|
63 |
+
| 0.2686 | 5.0 | 2385 | 0.2697 | 0.1374 | 0.2383 | 0.1743 | 0.9086 |
|
64 |
+
| 0.2568 | 6.0 | 2862 | 0.2573 | 0.1450 | 0.2525 | 0.1842 | 0.9140 |
|
65 |
+
| 0.2472 | 7.0 | 3339 | 0.2534 | 0.1492 | 0.2574 | 0.1889 | 0.9166 |
|
66 |
+
| 0.2405 | 8.0 | 3816 | 0.2548 | 0.1413 | 0.2515 | 0.1809 | 0.9153 |
|
67 |
+
| 0.2345 | 9.0 | 4293 | 0.2545 | 0.1489 | 0.2564 | 0.1884 | 0.9163 |
|
68 |
+
| 0.2299 | 10.0 | 4770 | 0.2551 | 0.1523 | 0.2608 | 0.1923 | 0.9175 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.28.1
|
74 |
+
- Pytorch 2.0.0+cu118
|
75 |
+
- Datasets 2.12.0
|
76 |
+
- Tokenizers 0.13.3
|