Baljinnyam commited on
Commit
f4e5670
1 Parent(s): e7f607b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - mn
4
+ license: bigscience-bloom-rail-1.0
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: bloom-NER-fr
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # bloom-NER-fr
21
+
22
+ This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.3194
25
+ - Precision: 0.3970
26
+ - Recall: 0.5804
27
+ - F1: 0.4715
28
+ - Accuracy: 0.9283
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 2e-05
48
+ - train_batch_size: 16
49
+ - eval_batch_size: 32
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 6
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 1.0627 | 1.0 | 235 | 0.3106 | 0.2650 | 0.4111 | 0.3223 | 0.8957 |
60
+ | 0.3001 | 2.0 | 470 | 0.2626 | 0.3603 | 0.5418 | 0.4328 | 0.9145 |
61
+ | 0.2208 | 3.0 | 705 | 0.2848 | 0.3911 | 0.5569 | 0.4595 | 0.9178 |
62
+ | 0.1573 | 4.0 | 940 | 0.2904 | 0.3479 | 0.5336 | 0.4212 | 0.9149 |
63
+ | 0.1004 | 5.0 | 1175 | 0.2746 | 0.3884 | 0.5704 | 0.4621 | 0.9268 |
64
+ | 0.0594 | 6.0 | 1410 | 0.3194 | 0.3970 | 0.5804 | 0.4715 | 0.9283 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.28.1
70
+ - Pytorch 2.0.0+cu118
71
+ - Datasets 2.12.0
72
+ - Tokenizers 0.13.3