Baljinnyam
commited on
Commit
•
f4e5670
1
Parent(s):
e7f607b
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- mn
|
4 |
+
license: bigscience-bloom-rail-1.0
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: bloom-NER-fr
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# bloom-NER-fr
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the None dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.3194
|
25 |
+
- Precision: 0.3970
|
26 |
+
- Recall: 0.5804
|
27 |
+
- F1: 0.4715
|
28 |
+
- Accuracy: 0.9283
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 2e-05
|
48 |
+
- train_batch_size: 16
|
49 |
+
- eval_batch_size: 32
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 6
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
59 |
+
| 1.0627 | 1.0 | 235 | 0.3106 | 0.2650 | 0.4111 | 0.3223 | 0.8957 |
|
60 |
+
| 0.3001 | 2.0 | 470 | 0.2626 | 0.3603 | 0.5418 | 0.4328 | 0.9145 |
|
61 |
+
| 0.2208 | 3.0 | 705 | 0.2848 | 0.3911 | 0.5569 | 0.4595 | 0.9178 |
|
62 |
+
| 0.1573 | 4.0 | 940 | 0.2904 | 0.3479 | 0.5336 | 0.4212 | 0.9149 |
|
63 |
+
| 0.1004 | 5.0 | 1175 | 0.2746 | 0.3884 | 0.5704 | 0.4621 | 0.9268 |
|
64 |
+
| 0.0594 | 6.0 | 1410 | 0.3194 | 0.3970 | 0.5804 | 0.4715 | 0.9283 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.28.1
|
70 |
+
- Pytorch 2.0.0+cu118
|
71 |
+
- Datasets 2.12.0
|
72 |
+
- Tokenizers 0.13.3
|