Update training with higher learning rate
Browse files- README.md +1 -1
- config.json +1 -1
- lunarlander_unit1.zip +2 -2
- lunarlander_unit1/data +5 -5
- lunarlander_unit1/policy.optimizer.pth +1 -1
- lunarlander_unit1/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 264.72 +/- 13.71
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5c7c59e7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5c7c59e830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5c7c59e8c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5c7c59e950>", "_build": "<function ActorCriticPolicy._build at 0x7f5c7c59e9e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5c7c59ea70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5c7c59eb00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5c7c59eb90>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5c7c59ec20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5c7c59ecb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5c7c59ed40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5c7c59edd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5c7c5ad400>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686409133842296718, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJgXgL6qkqg+mix5PkkKjL7hygw7IkMGPQAAAAAAAAAAzc3fvKlbBbyGOLG81JOPvICgqDzs7sq8AACAPwAAgD8t5DS+VB+uvFtC2rnrTU24ehkdPoEVFjkAAIA/AACAP81MjT3u0LA/dmESP4JQgb7r1QE92jGJPgAAAAAAAAAAczexPVeTtj+ijhw/467ZvboFJz2ue4g+AAAAAAAAAADa+WI+Bhc8P0oXFT7zHLa+Hr8ZPjM1WrsAAAAAAAAAABpaY74heG4+aNJYPsLDgr5PTk08dyC6vAAAAAAAAAAA7fYqvju8kLwiRZu7qfU5utbX+T3KKxE7AACAPwAAgD/TXRO+6O/7Pl5bIz4jYsW+/YPMPO2whjwAAAAAAAAAAE3bOj2gh6o/WnTFPobN5r7X3gA9fOMlPgAAAAAAAAAAwCDKvVKYvbksOjK4CaAbMhHXHrtNn1E3AACAPwAAgD9N5+a93glZP2uP4bw+5NW+1BxBvWacIbwAAAAAAAAAAIYhTD50SPu8DpuAOzf/I7qW82C+BaP+ugAAgD8AAIA/mmhzvrh5yD2iOkk+JKwrvpuijrzZ6im8AAAAAAAAAAANC4u9KRRLuvC21DVxzcowhTnnussz9bQAAIA/AACAPwAdfb0p/G665y9Fui36RbX7YYA7CENnOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFQKO938oCMAWyUTSgBjAF0lEdAnowytV7x/nV9lChoBkdAcGivXK8tgGgHTQ8BaAhHQJ6MwigTRIB1fZQoaAZHQG7kmXHBDXxoB00CAWgIR0CejT1WsA/+dX2UKGgGR0BwMp9ph4MXaAdNDgFoCEdAno+I7zTWoXV9lChoBkdAcmHtV7x/eGgHTV0BaAhHQJ6QGso2GZh1fZQoaAZHQHCwgaisXBRoB00AAWgIR0Cekq61LJ0XdX2UKGgGR0BvyD3IuGsWaAdNEQFoCEdAnpPudf9gnnV9lChoBkdAcBw5ksjFAGgHTR0BaAhHQJ6T6hDgIhR1fZQoaAZHQHFfEFfReC1oB00jAWgIR0CelozGPxQSdX2UKGgGR0BxlsG2TgVHaAdNCgFoCEdAnpay5I6KcnV9lChoBkdAchTZWaMJhWgHTQ4BaAhHQJ6XGLR8c+91fZQoaAZHQGzvUkfLcKxoB00TAWgIR0CemB+4b0e2dX2UKGgGR0BxfYophF3IaAdNAQFoCEdAnphz1kDp1XV9lChoBkdAcpQHt4RmLGgHTR4BaAhHQJ6Yy0zCUHJ1fZQoaAZHQHDIWZmZmZpoB0v/aAhHQJ6ZRs1sLv11fZQoaAZHQG8IsLORkmRoB00sAWgIR0CemYvZRKpUdX2UKGgGR0BwXYq9XcQAaAdNBgFoCEdAnpztP557gXV9lChoBkdAckl/yXlbNmgHTQsBaAhHQJ6d0MG5c1R1fZQoaAZHQGNePyCnP3VoB03oA2gIR0CeoIv4dp7DdX2UKGgGR0Bsv5NATqSpaAdNHgFoCEdAnqHaOxSpBHV9lChoBkdAccTyTpxFRmgHTRoBaAhHQJ6ipJEpiJB1fZQoaAZHQHK/V0cOskpoB00mAWgIR0CeowcENe+mdX2UKGgGR0BxKR2JSBK+aAdL92gIR0Ceo0EYfnwHdX2UKGgGR0BvWYm5UcXFaAdNBQFoCEdAnqP83uNPxnV9lChoBkdAcQJMSK3uu2gHTRsBaAhHQJ6kaYu01Il1fZQoaAZHQHC/+ajN6gNoB00GAWgIR0CepJdIXj2jdX2UKGgGR0ByVnj94u9OaAdNDgFoCEdAnqU7fUF0P3V9lChoBkdAcMTrMTviLmgHTR8BaAhHQJ6mEPI4lyB1fZQoaAZHQHK31MEidJ9oB00wAWgIR0Cepho/zJ6qdX2UKGgGR0Bwk4rPMSsbaAdNIQFoCEdAnqZNvwVj7XV9lChoBkdAcDugsK9f1GgHS/loCEdAnqcT0Dlo13V9lChoBkdAb8A4J/oaDWgHS/poCEdAnqeLZamoBXV9lChoBkdAcdNUFjd56mgHTQMBaAhHQJ6pWFmFrVR1fZQoaAZHQG/dlvqC6H1oB0vtaAhHQJ6pYlAu7H11fZQoaAZHQHJk18CxNZhoB00IAWgIR0Cequhib2DhdX2UKGgGR0Bu4mdupCKKaAdNCgFoCEdAnquqh+OOsHV9lChoBkdAcBCZMcp9Z2gHTRwBaAhHQJ6sE3tKIzp1fZQoaAZHQGzG0P6KtPpoB00BAWgIR0CerCU7CBPLdX2UKGgGR0ByFFgKF7D3aAdL6GgIR0CerKS6DoQndX2UKGgGR0BwPWQCCBf8aAdNDgFoCEdAnq06bayrxXV9lChoBkdAcad09QoCuGgHTTUBaAhHQJ6uVdRiw0R1fZQoaAZHQHBWDP8hs69oB00FAWgIR0CeroIQe3hGdX2UKGgGR0BwXi8WbgCPaAdNDAFoCEdAnq79VzZHu3V9lChoBkdAcEUZaV2RrGgHTRMBaAhHQJ6u/xRVIZt1fZQoaAZHQHDMFxKg7HRoB0v8aAhHQJ6vWISDh991fZQoaAZHQG+MkxqO939oB0vqaAhHQJ6vT212JSB1fZQoaAZHQGGY93bEgntoB03oA2gIR0CesB7U5MlDdX2UKGgGR0Bfhmgam4y5aAdN6ANoCEdAnrAjlYEGJXV9lChoBkdAckRjEvTPSmgHTRYBaAhHQJ6yEzabnYB1fZQoaAZHQHDDWus90RxoB0v9aAhHQJ6zwoVmBe51fZQoaAZHQHHlrrxAjY9oB00kAWgIR0CetAfOlfqpdX2UKGgGR0Bw5wAcT8HfaAdNZgFoCEdAnrS5ha1Ti3V9lChoBkdAcKrI1tO2zGgHTRQBaAhHQJ61F0DEFW51fZQoaAZHQHL9grDqGDdoB008AWgIR0CetX5xzaK2dX2UKGgGR0ByEoLux8lYaAdNNwFoCEdAnrW8U7CBPXV9lChoBkdAcJ54YaYNRWgHTQsBaAhHQJ62XQKKHfx1fZQoaAZHQHAQWkvboKVoB0vraAhHQJ62XN1QqI91fZQoaAZHQG14T7MxGlRoB0v6aAhHQJ62c6ltTDR1fZQoaAZHQHKmwhnrY5FoB0vuaAhHQJ62a56MR6F1fZQoaAZHQHHnPVmSQo1oB0v/aAhHQJ62kvN/vv11fZQoaAZHQHD5lzZHuqpoB00YAWgIR0Cets/4ZdfLdX2UKGgGR0BxZdeLNwBHaAdNRgFoCEdAnrb9E1EVnHV9lChoBkdAcFRNfgJkXmgHS/xoCEdAnrd2oJiRXHV9lChoBkdAbuMEwnH/+GgHS/9oCEdAnreIQFs54nV9lChoBkdAcMfU+cH4XWgHS/BoCEdAnrjhMi8nNXV9lChoBkdAcngEF4cFQmgHTQUBaAhHQJ67PKSxJNF1fZQoaAZHQG9QA7PppvhoB0v1aAhHQJ67ys3hn8N1fZQoaAZHQG7JYIKMNttoB00GAWgIR0CevAknTiKjdX2UKGgGR0BwB/eQ+2VnaAdNAQFoCEdAnr0RwMpgC3V9lChoBkdAbmM1/lQuVWgHS/BoCEdAnr0wIt16mnV9lChoBkdAcrXkGiYb82gHTRwBaAhHQJ69u5paibl1fZQoaAZHQHApWoBJZntoB00FAWgIR0CevtzPa+N+dX2UKGgGR0ByPfDaXa8IaAdNDwFoCEdAnr7yIP9UCXV9lChoBkdAccRmYjSofmgHTR8BaAhHQJ6+8qiGnGd1fZQoaAZHQHDkYwmE5ABoB00nAWgIR0Cev2mBOHnEdX2UKGgGR0BwC7yc0+C9aAdNOAFoCEdAnr/IDgZTAHV9lChoBkdAcuRJCSidrmgHTQsBaAhHQJ6/2THKfWd1fZQoaAZHQHDmYqwyIpJoB00eAWgIR0CewFJ2t+1CdX2UKGgGR0BuNSsuFpPAaAdL/2gIR0CewS0b961LdX2UKGgGR0ByVnRoh6jWaAdNAAFoCEdAnsPjd+G47XV9lChoBkdAb5l3L3bmEGgHS+hoCEdAnsTuFg2If3V9lChoBkdAb+lkVeruIGgHTQsBaAhHQJ7FIPJ7sv91fZQoaAZHQHAkwl4TsY5oB0vsaAhHQJ7Frxe9i+d1fZQoaAZHQG9/U7jkuHxoB00NAWgIR0CexjJIlMRIdX2UKGgGR0BypjiDM/yHaAdL7mgIR0Cex5DZ13dLdX2UKGgGR0Bt7MyvcJt0aAdL8GgIR0CeyB3solUqdX2UKGgGR0BuIOuRs/IKaAdL/WgIR0CeyL4ZMtbtdX2UKGgGR0BwwYEs8PnTaAdNGQFoCEdAnsjG9DhLoXV9lChoBkdAcaMAzpHI62gHTR0BaAhHQJ7I2UiY9gZ1fZQoaAZHQHB5gEEC/49oB0vraAhHQJ7Js0CRwId1fZQoaAZHQHAn83IdU85oB00ZAWgIR0Ceylx3FDOUdX2UKGgGR0BwfP5wfhddaAdNUgFoCEdAnssBYV6/qXV9lChoBkdAcTx0OEug6GgHS/hoCEdAns4ys4ku6HV9lChoBkdAbjVakAPuomgHS/FoCEdAns9E5lvqDHV9lChoBkdAb9BjnV5KOGgHS+5oCEdAns9oUJv5xnV9lChoBkdAcRTsyi22HGgHS/toCEdAntDRCtzS1HV9lChoBkdAcUruCPIXCWgHTQIBaAhHQJ7R5G8VYZF1fZQoaAZHQHHJ37UG3WpoB00JAWgIR0Ce1SZs9B8hdX2UKGgGR0BwFoDs+mm+aAdL/GgIR0Ce1Ulp48lpdX2UKGgGR0Bya56Ww/xEaAdNGAFoCEdAntVE70WdmXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5c7c59e7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5c7c59e830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5c7c59e8c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5c7c59e950>", "_build": "<function ActorCriticPolicy._build at 0x7f5c7c59e9e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5c7c59ea70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5c7c59eb00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5c7c59eb90>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5c7c59ec20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5c7c59ecb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5c7c59ed40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5c7c59edd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5c7c5ad400>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686415197911339277, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI2X7L3xyRw8c6n5PaSxFL6DwRw8lU0JvAAAAAAAAAAAgJRuvSYwgD7AjOc9bVTAvtS6Qz01HsA9AAAAAAAAAAAAuaI9Uti6ODnChru/wpuzL2GNu1pSAbMAAIA/AAAAABp/BD4+j+89Auevvr/uUr5IoUG9i5wrvQAAAAAAAAAAGnQDvl0zWj65bIU+fE/zvm03zj4GX8s9AAAAAAAAAADmqGw9HJF4vNZHsL5a4Uc9c3GxvShh6bsAAAAAAAAAAC1sSb7JXUU/PlzbPIxmH7/pkQO+a9xRPgAAAAAAAAAAzd8lvUnmMD27QFI9n3Y9vkSSzTxo32U7AAAAAAAAAABTaUg+/EmmPg+KGr3BeqK+xT8FPu6b370AAAAAAAAAAKbDir1spqi7o5BvOjGB9zzlXlu8lSnmvAAAgD8AAIA/BkshvraYXLyxP6U69cnbOMPawT3lmN+5AACAPwAAgD+aYa88HHaoPwCxET6KOPK+yGCBPHOSdz0AAAAAAAAAAC0dNL7I77a8GtLXOtvIWjlsIiA+sgUWugAAgD8AAIA/TcoyPYJSuz81vxU+VE6mvqD/xjxckhu8AAAAAAAAAADann4+g+A3P7vjAb2Ai+q+sxOJPmPMdr0AAAAAAAAAAE2Lyr2I2868r8wVvEyBGL0VWRE8mIJTPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHH50nkT6BSMAWyUS7aMAXSUR0C/Rf7fHggpdX2UKGgGR0BhWeqo60Y1aAdN6ANoCEdAv0YP3ztkWnV9lChoBkdAb1ki/O+qR2gHS7NoCEdAv0YlcfNiY3V9lChoBkdAb/o3HaN+9mgHS8NoCEdAv0Yw6FM7EHV9lChoBkdAcSEaK1og3mgHS9BoCEdAv0ZXjMmnfnV9lChoBkdAXmQWl/H5rWgHTegDaAhHQL9GYMajveB1fZQoaAZHQHHFIicG1QZoB0uwaAhHQL9GY+nIhhZ1fZQoaAZHQHAVZfpljExoB0vEaAhHQL9GkF3pwCN1fZQoaAZHQHGrl+uvECNoB0u7aAhHQL9GmbYsd1d1fZQoaAZHQG8jQd8zAN5oB0u5aAhHQL9Go6VMVUN1fZQoaAZHQHC2TTKDCgtoB0vnaAhHQL9G8oL5RCR1fZQoaAZHQHKaTD8+A3FoB00DAWgIR0C/R0mBvrGBdX2UKGgGR0ByQsU1yeZoaAdL/mgIR0C/R0+lGgBcdX2UKGgGR0BtmFLg4wRHaAdLxWgIR0C/R0/2saKldX2UKGgGR0Bvq4hMajveaAdL02gIR0C/R1ZD3M6jdX2UKGgGR0BQYms3hn8LaAdLl2gIR0C/R2GCI1tPdX2UKGgGR0BxXqDh99c9aAdLsmgIR0C/R2MRYigTdX2UKGgGR0ByVkH7gsK9aAdLx2gIR0C/R3nY+Sr6dX2UKGgGR0ByxJ7x/d6+aAdL6mgIR0C/R43oHLRsdX2UKGgGR0Bx8DbvgFX8aAdL5GgIR0C/R5M3uNPydX2UKGgGR0BzSETDfm9yaAdL2mgIR0C/R82DpTuOdX2UKGgGR0BzMNYr8R+SaAdL62gIR0C/R98/yGzsdX2UKGgGR0BwRANBnjABaAdL2mgIR0C/SAi3LFGYdX2UKGgGR0ByFLH4oJAuaAdL6GgIR0C/SBZpJwsHdX2UKGgGR0ByKfoMa0hNaAdL3WgIR0C/SBhMWXTmdX2UKGgGR0ByRm3Zwn6VaAdLxWgIR0C/SDwKnei0dX2UKGgGR0BwXy1PWQOnaAdLvmgIR0C/SI5VwPy1dX2UKGgGR0By0njABT4taAdLy2gIR0C/SL30btJGdX2UKGgGR0BtMUKsuFpPaAdL1WgIR0C/SMSgGr0bdX2UKGgGR0Bwckr8R+SbaAdL2GgIR0C/SMQXEZR9dX2UKGgGR0BxdmN5t3wDaAdL52gIR0C/SNlocrAhdX2UKGgGR0BxD4V32VVxaAdL22gIR0C/SPVp48lpdX2UKGgGR0BxGDWTX8O1aAdLuWgIR0C/SRhY7q6fdX2UKGgGR0BxYaSwGGEgaAdL6GgIR0C/SSi/CZWrdX2UKGgGR0BypT420iQlaAdL7WgIR0C/SSwR5C4SdX2UKGgGR0BwATIaLn9vaAdNCwFoCEdAv0kwPkJa7nV9lChoBkdAb0AMI/qxDGgHS8hoCEdAv0lDsLORknV9lChoBkdAcov3R5TqB2gHS7VoCEdAv0lM2uPmxXV9lChoBkdAcaDF0gbIcWgHS8loCEdAv0mC0qpcX3V9lChoBkdAcZTnlnyup2gHS9doCEdAv0mXlQuVX3V9lChoBkdAcP2hR64Ue2gHS95oCEdAv0nLiqABk3V9lChoBkdAcIyOp84Pw2gHS7xoCEdAv0oIgGKQ73V9lChoBkdAb8ayzHCGe2gHS8xoCEdAv0ouNaQmu3V9lChoBkdAcsfp6QeV9mgHS+VoCEdAv0or0Zm7KHV9lChoBkdAcU+WZ7Xxv2gHS8RoCEdAv0o05S3sonV9lChoBkdAcxIE61b7j2gHS9hoCEdAv0pHf/FR53V9lChoBkdAbsCT2WY4Q2gHS79oCEdAv0qf/4qPO3V9lChoBkdAcFREVWS2Y2gHS+FoCEdAv0qtydWhiHV9lChoBkdAcYeegte2NWgHS89oCEdAv0q08xKxs3V9lChoBkdAb5aQq7ROUWgHS7toCEdAv0rGBoVVP3V9lChoBkdAbylUtI0652gHS8FoCEdAv0rj0btJF3V9lChoBkdAcAk8LKFIu2gHS+RoCEdAv0sHH7xd6nV9lChoBkdAbpXtFa0Qb2gHS+hoCEdAv0sWZv1lG3V9lChoBkdAbwYPmxMWXWgHS7loCEdAv0sZX5nDi3V9lChoBkdAb6UnRb8m8mgHS+doCEdAv0u3yoXKsHV9lChoBkdAcVVTpgTh52gHS6RoCEdAv0vmrbQC0XV9lChoBkdAcCjzUqhDgWgHS9JoCEdAv0w9vitJWnV9lChoBkdAcDdQPZqVQmgHS8loCEdAv0xrjm0VrXV9lChoBkdAcV7NrCWNWGgHS99oCEdAv0yqqwQlKXV9lChoBkdAcbIvm5lOGmgHTRQBaAhHQL9MsBWPtD51fZQoaAZHQHGLiOq//NtoB0vBaAhHQL9M1cFhXsB1fZQoaAZHQFvG7rcCYC1oB03oA2gIR0C/TOvOt4iYdX2UKGgGR0Bu6Lq2SdOJaAdLyGgIR0C/TPsgdOqOdX2UKGgGR0Bw99iy6cy4aAdL92gIR0C/TRrEUCaJdX2UKGgGR0ByZHuVopQUaAdL1WgIR0C/TSYX9BKMdX2UKGgGR0BwQ68OCoS+aAdLrmgIR0C/TSeCXhOydX2UKGgGR0By+n/yXlbNaAdLw2gIR0C/TUkpAlfJdX2UKGgGR0BtI5RO1v2oaAdL0mgIR0C/TX5ylvZRdX2UKGgGR0BywQFSsKb8aAdL+GgIR0C/Ta8m0E5idX2UKGgGR0BxLyz6ab4KaAdLr2gIR0C/Tew9ic5KdX2UKGgGR0ByUL2OAAhjaAdLz2gIR0C/ThnObAk+dX2UKGgGR0BxS+pWFN+LaAdL02gIR0C/Tq01VHWjdX2UKGgGR0BurmLBKtgbaAdLxGgIR0C/TuaubI91dX2UKGgGR0BvIojOcDr7aAdLuGgIR0C/T0Ar+YMOdX2UKGgGR0Bxea+N96ToaAdL8WgIR0C/Tz4kAxSHdX2UKGgGR0BwFFGx2SuAaAdLzWgIR0C/T0zHsC1adX2UKGgGR0BzyYG4ZuQ7aAdL3WgIR0C/T1UlJHy3dX2UKGgGR0BwY7Ho5ggHaAdL7GgIR0C/T1rmZE2HdX2UKGgGR0BxdbtiQT24aAdL6GgIR0C/T5TsUqQSdX2UKGgGR0BxE8hEBsAOaAdL0WgIR0C/T7PxMFlkdX2UKGgGR0Bw1wsvqTr3aAdLv2gIR0C/UAVfeDWcdX2UKGgGR0ByEUeS0Sh8aAdNDwFoCEdAv1AKVcD8tXV9lChoBkdAcpBTbWVeKWgHS+poCEdAv1AOxD9fkXV9lChoBkdAcqY/YraufWgHTSEBaAhHQL9QEyPdVNp1fZQoaAZHQHNwNYSxqwhoB0vfaAhHQL9QI0gr6Lx1fZQoaAZHQHLMb3oLXtloB0vUaAhHQL9QiN7jT8Z1fZQoaAZHQHCji6cy31BoB0u0aAhHQL9Qubn5i3J1fZQoaAZHQHOWm+sYEW9oB0vWaAhHQL9Q7fsu3+d1fZQoaAZHQHKUYF7laKVoB0v5aAhHQL9RAAUtZmt1fZQoaAZHQHK/wgs9SuRoB0veaAhHQL9RDoa1kUd1fZQoaAZHQHBSSKR+z+poB0vjaAhHQL9RKG+9Jz11fZQoaAZHQHP4yJ40Mw1oB0vNaAhHQL9ROpIczZZ1fZQoaAZHQHIAt7a7EpBoB00VAWgIR0C/UXjTjNpudX2UKGgGR0BxCxzZHuqnaAdLs2gIR0C/UX8eOn2qdX2UKGgGR0BuBcQNCqp+aAdLv2gIR0C/UaCyUs4DdX2UKGgGR0Bxm+Eg4ffXaAdL8mgIR0C/Ua1+mWMTdX2UKGgGR0Byz0iliz9kaAdL4mgIR0C/UedIoVmBdX2UKGgGR0Bx+S7z06HTaAdL62gIR0C/UfJoCdSVdX2UKGgGR0BxmtsDW9UTaAdNAgFoCEdAv1JBQ40dinV9lChoBkdAcUS43m3fAWgHS95oCEdAv1JmSt/4I3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
lunarlander_unit1.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32fc53b9a19604406d4a50d3229d372ee27b0b2578c5526ee68e7713e777280e
|
3 |
+
size 146637
|
lunarlander_unit1/data
CHANGED
@@ -26,12 +26,12 @@
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
-
"learning_rate": 0.
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,7 +45,7 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
@@ -94,6 +94,6 @@
|
|
94 |
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
-
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
98 |
}
|
99 |
}
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1686415197911339277,
|
30 |
+
"learning_rate": 0.001,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI2X7L3xyRw8c6n5PaSxFL6DwRw8lU0JvAAAAAAAAAAAgJRuvSYwgD7AjOc9bVTAvtS6Qz01HsA9AAAAAAAAAAAAuaI9Uti6ODnChru/wpuzL2GNu1pSAbMAAIA/AAAAABp/BD4+j+89Auevvr/uUr5IoUG9i5wrvQAAAAAAAAAAGnQDvl0zWj65bIU+fE/zvm03zj4GX8s9AAAAAAAAAADmqGw9HJF4vNZHsL5a4Uc9c3GxvShh6bsAAAAAAAAAAC1sSb7JXUU/PlzbPIxmH7/pkQO+a9xRPgAAAAAAAAAAzd8lvUnmMD27QFI9n3Y9vkSSzTxo32U7AAAAAAAAAABTaUg+/EmmPg+KGr3BeqK+xT8FPu6b370AAAAAAAAAAKbDir1spqi7o5BvOjGB9zzlXlu8lSnmvAAAgD8AAIA/BkshvraYXLyxP6U69cnbOMPawT3lmN+5AACAPwAAgD+aYa88HHaoPwCxET6KOPK+yGCBPHOSdz0AAAAAAAAAAC0dNL7I77a8GtLXOtvIWjlsIiA+sgUWugAAgD8AAIA/TcoyPYJSuz81vxU+VE6mvqD/xjxckhu8AAAAAAAAAADann4+g+A3P7vjAb2Ai+q+sxOJPmPMdr0AAAAAAAAAAE2Lyr2I2868r8wVvEyBGL0VWRE8mIJTPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV6gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHH50nkT6BSMAWyUS7aMAXSUR0C/Rf7fHggpdX2UKGgGR0BhWeqo60Y1aAdN6ANoCEdAv0YP3ztkWnV9lChoBkdAb1ki/O+qR2gHS7NoCEdAv0YlcfNiY3V9lChoBkdAb/o3HaN+9mgHS8NoCEdAv0Yw6FM7EHV9lChoBkdAcSEaK1og3mgHS9BoCEdAv0ZXjMmnfnV9lChoBkdAXmQWl/H5rWgHTegDaAhHQL9GYMajveB1fZQoaAZHQHHFIicG1QZoB0uwaAhHQL9GY+nIhhZ1fZQoaAZHQHAVZfpljExoB0vEaAhHQL9GkF3pwCN1fZQoaAZHQHGrl+uvECNoB0u7aAhHQL9GmbYsd1d1fZQoaAZHQG8jQd8zAN5oB0u5aAhHQL9Go6VMVUN1fZQoaAZHQHC2TTKDCgtoB0vnaAhHQL9G8oL5RCR1fZQoaAZHQHKaTD8+A3FoB00DAWgIR0C/R0mBvrGBdX2UKGgGR0ByQsU1yeZoaAdL/mgIR0C/R0+lGgBcdX2UKGgGR0BtmFLg4wRHaAdLxWgIR0C/R0/2saKldX2UKGgGR0Bvq4hMajveaAdL02gIR0C/R1ZD3M6jdX2UKGgGR0BQYms3hn8LaAdLl2gIR0C/R2GCI1tPdX2UKGgGR0BxXqDh99c9aAdLsmgIR0C/R2MRYigTdX2UKGgGR0ByVkH7gsK9aAdLx2gIR0C/R3nY+Sr6dX2UKGgGR0ByxJ7x/d6+aAdL6mgIR0C/R43oHLRsdX2UKGgGR0Bx8DbvgFX8aAdL5GgIR0C/R5M3uNPydX2UKGgGR0BzSETDfm9yaAdL2mgIR0C/R82DpTuOdX2UKGgGR0BzMNYr8R+SaAdL62gIR0C/R98/yGzsdX2UKGgGR0BwRANBnjABaAdL2mgIR0C/SAi3LFGYdX2UKGgGR0ByFLH4oJAuaAdL6GgIR0C/SBZpJwsHdX2UKGgGR0ByKfoMa0hNaAdL3WgIR0C/SBhMWXTmdX2UKGgGR0ByRm3Zwn6VaAdLxWgIR0C/SDwKnei0dX2UKGgGR0BwXy1PWQOnaAdLvmgIR0C/SI5VwPy1dX2UKGgGR0By0njABT4taAdLy2gIR0C/SL30btJGdX2UKGgGR0BtMUKsuFpPaAdL1WgIR0C/SMSgGr0bdX2UKGgGR0Bwckr8R+SbaAdL2GgIR0C/SMQXEZR9dX2UKGgGR0BxdmN5t3wDaAdL52gIR0C/SNlocrAhdX2UKGgGR0BxD4V32VVxaAdL22gIR0C/SPVp48lpdX2UKGgGR0BxGDWTX8O1aAdLuWgIR0C/SRhY7q6fdX2UKGgGR0BxYaSwGGEgaAdL6GgIR0C/SSi/CZWrdX2UKGgGR0BypT420iQlaAdL7WgIR0C/SSwR5C4SdX2UKGgGR0BwATIaLn9vaAdNCwFoCEdAv0kwPkJa7nV9lChoBkdAb0AMI/qxDGgHS8hoCEdAv0lDsLORknV9lChoBkdAcov3R5TqB2gHS7VoCEdAv0lM2uPmxXV9lChoBkdAcaDF0gbIcWgHS8loCEdAv0mC0qpcX3V9lChoBkdAcZTnlnyup2gHS9doCEdAv0mXlQuVX3V9lChoBkdAcP2hR64Ue2gHS95oCEdAv0nLiqABk3V9lChoBkdAcIyOp84Pw2gHS7xoCEdAv0oIgGKQ73V9lChoBkdAb8ayzHCGe2gHS8xoCEdAv0ouNaQmu3V9lChoBkdAcsfp6QeV9mgHS+VoCEdAv0or0Zm7KHV9lChoBkdAcU+WZ7Xxv2gHS8RoCEdAv0o05S3sonV9lChoBkdAcxIE61b7j2gHS9hoCEdAv0pHf/FR53V9lChoBkdAbsCT2WY4Q2gHS79oCEdAv0qf/4qPO3V9lChoBkdAcFREVWS2Y2gHS+FoCEdAv0qtydWhiHV9lChoBkdAcYeegte2NWgHS89oCEdAv0q08xKxs3V9lChoBkdAb5aQq7ROUWgHS7toCEdAv0rGBoVVP3V9lChoBkdAbylUtI0652gHS8FoCEdAv0rj0btJF3V9lChoBkdAcAk8LKFIu2gHS+RoCEdAv0sHH7xd6nV9lChoBkdAbpXtFa0Qb2gHS+hoCEdAv0sWZv1lG3V9lChoBkdAbwYPmxMWXWgHS7loCEdAv0sZX5nDi3V9lChoBkdAb6UnRb8m8mgHS+doCEdAv0u3yoXKsHV9lChoBkdAcVVTpgTh52gHS6RoCEdAv0vmrbQC0XV9lChoBkdAcCjzUqhDgWgHS9JoCEdAv0w9vitJWnV9lChoBkdAcDdQPZqVQmgHS8loCEdAv0xrjm0VrXV9lChoBkdAcV7NrCWNWGgHS99oCEdAv0yqqwQlKXV9lChoBkdAcbIvm5lOGmgHTRQBaAhHQL9MsBWPtD51fZQoaAZHQHGLiOq//NtoB0vBaAhHQL9M1cFhXsB1fZQoaAZHQFvG7rcCYC1oB03oA2gIR0C/TOvOt4iYdX2UKGgGR0Bu6Lq2SdOJaAdLyGgIR0C/TPsgdOqOdX2UKGgGR0Bw99iy6cy4aAdL92gIR0C/TRrEUCaJdX2UKGgGR0ByZHuVopQUaAdL1WgIR0C/TSYX9BKMdX2UKGgGR0BwQ68OCoS+aAdLrmgIR0C/TSeCXhOydX2UKGgGR0By+n/yXlbNaAdLw2gIR0C/TUkpAlfJdX2UKGgGR0BtI5RO1v2oaAdL0mgIR0C/TX5ylvZRdX2UKGgGR0BywQFSsKb8aAdL+GgIR0C/Ta8m0E5idX2UKGgGR0BxLyz6ab4KaAdLr2gIR0C/Tew9ic5KdX2UKGgGR0ByUL2OAAhjaAdLz2gIR0C/ThnObAk+dX2UKGgGR0BxS+pWFN+LaAdL02gIR0C/Tq01VHWjdX2UKGgGR0BurmLBKtgbaAdLxGgIR0C/TuaubI91dX2UKGgGR0BvIojOcDr7aAdLuGgIR0C/T0Ar+YMOdX2UKGgGR0Bxea+N96ToaAdL8WgIR0C/Tz4kAxSHdX2UKGgGR0BwFFGx2SuAaAdLzWgIR0C/T0zHsC1adX2UKGgGR0BzyYG4ZuQ7aAdL3WgIR0C/T1UlJHy3dX2UKGgGR0BwY7Ho5ggHaAdL7GgIR0C/T1rmZE2HdX2UKGgGR0BxdbtiQT24aAdL6GgIR0C/T5TsUqQSdX2UKGgGR0BxE8hEBsAOaAdL0WgIR0C/T7PxMFlkdX2UKGgGR0Bw1wsvqTr3aAdLv2gIR0C/UAVfeDWcdX2UKGgGR0ByEUeS0Sh8aAdNDwFoCEdAv1AKVcD8tXV9lChoBkdAcpBTbWVeKWgHS+poCEdAv1AOxD9fkXV9lChoBkdAcqY/YraufWgHTSEBaAhHQL9QEyPdVNp1fZQoaAZHQHNwNYSxqwhoB0vfaAhHQL9QI0gr6Lx1fZQoaAZHQHLMb3oLXtloB0vUaAhHQL9QiN7jT8Z1fZQoaAZHQHCji6cy31BoB0u0aAhHQL9Qubn5i3J1fZQoaAZHQHOWm+sYEW9oB0vWaAhHQL9Q7fsu3+d1fZQoaAZHQHKUYF7laKVoB0v5aAhHQL9RAAUtZmt1fZQoaAZHQHK/wgs9SuRoB0veaAhHQL9RDoa1kUd1fZQoaAZHQHBSSKR+z+poB0vjaAhHQL9RKG+9Jz11fZQoaAZHQHP4yJ40Mw1oB0vNaAhHQL9ROpIczZZ1fZQoaAZHQHIAt7a7EpBoB00VAWgIR0C/UXjTjNpudX2UKGgGR0BxCxzZHuqnaAdLs2gIR0C/UX8eOn2qdX2UKGgGR0BuBcQNCqp+aAdLv2gIR0C/UaCyUs4DdX2UKGgGR0Bxm+Eg4ffXaAdL8mgIR0C/Ua1+mWMTdX2UKGgGR0Byz0iliz9kaAdL4mgIR0C/UedIoVmBdX2UKGgGR0Bx+S7z06HTaAdL62gIR0C/UfJoCdSVdX2UKGgGR0BxmtsDW9UTaAdNAgFoCEdAv1JBQ40dinV9lChoBkdAcUS43m3fAWgHS95oCEdAv1JmSt/4I3VlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
|
|
94 |
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
}
|
99 |
}
|
lunarlander_unit1/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e244ddab571d4a57d2a85cf1360cb86fc678c57257a30a1c4b830fe6dc0e2605
|
3 |
size 87929
|
lunarlander_unit1/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43329
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6bc945ba310e71e39e270848d91d9b1a2086fdc7797c254f108dd1641601be3a
|
3 |
size 43329
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 264.7192521, "std_reward": 13.706681404193901, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-10T17:10:56.647856"}
|