Adversarial Robustness
Bai-YT commited on
Commit
599b245
·
verified ·
1 Parent(s): 5d1ba3b

Update README.md

Browse files

# MixedNUTS: Training-Free Accuracy-Robustness Balance via Nonlinearly Mixed Classifiers

This is the official model repository of the preprint paper \
*[MixedNUTS: Training-Free Accuracy-Robustness Balance via Nonlinearly Mixed Classifiers](https://arxiv.org/abs/2402.02263)* \
by [Yatong Bai](https://bai-yt.github.io), [Mo Zhou](https://cdluminate.github.io), [Vishal M. Patel](https://engineering.jhu.edu/faculty/vishal-patel), and [Somayeh Sojoudi](https://www2.eecs.berkeley.edu/Faculty/Homepages/sojoudi.html).

**TL;DR:** MixedNUTS balances clean data classification accuracy and adversarial robustness without additional training
via a mixed classifier with nonlinear base model logit transformations.

Here, we provide the download links to the standard base classifiers used in the main results.

| Dataset | Link |
|-----------|-------|
| CIFAR-10 | [Download](http://172.233.227.28/base_models/cifar10/cifar10_std_rn152.pt) |
| CIFAR-100 | [Download](http://172.233.227.28/base_models/cifar100/cifar100_std_rn152.pt) |
| ImageNet | [Download](https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_224_ema.pt) |

**For code and detailed usage, please refer to our [GitHub repository](https://github.com/Bai-YT/MixedNUTS).

<center>
<img src="main_figure.png" alt="MixedNUTS Results" title="Results" width="800"/>
</center>


#### Citing our work (BibTeX)

```bibtex


@article
{MixedNUTS,
title={MixedNUTS: Training-Free Accuracy-Robustness Balance via Nonlinearly Mixed Classifiers},
author={Bai, Yatong and Zhou, Mo and Patel, Vishal M. and Sojoudi, Somayeh},
journal={arXiv preprint arXiv:2402.02263},
year={2024}
}
```

Files changed (1) hide show
  1. README.md +9 -3
README.md CHANGED
@@ -1,3 +1,9 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - uoft-cs/cifar10
5
+ - uoft-cs/cifar100
6
+ - ILSVRC/imagenet-1k
7
+ tags:
8
+ - Adversarial Robustness
9
+ ---