BahAdoR0101 commited on
Commit
464161d
1 Parent(s): c02aa0e

End of training

Browse files
Files changed (2) hide show
  1. README.md +93 -0
  2. pytorch_model.bin +1 -1
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: dslim/bert-base-NER
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - conll2003job
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: my_xlm-roberta-large-finetuned-conlljob01
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: conll2003job
21
+ type: conll2003job
22
+ config: conll2003job
23
+ split: test
24
+ args: conll2003job
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.9057427125152732
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.9187322946175638
32
+ - name: F1
33
+ type: f1
34
+ value: 0.9121912630746243
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9825347259610208
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # my_xlm-roberta-large-finetuned-conlljob01
44
+
45
+ This model is a fine-tuned version of [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) on the conll2003job dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.1690
48
+ - Precision: 0.9057
49
+ - Recall: 0.9187
50
+ - F1: 0.9122
51
+ - Accuracy: 0.9825
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 16
72
+ - eval_batch_size: 16
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 4
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.0372 | 1.0 | 896 | 0.1439 | 0.8943 | 0.9184 | 0.9062 | 0.9816 |
83
+ | 0.0043 | 2.0 | 1792 | 0.1532 | 0.9047 | 0.9209 | 0.9127 | 0.9824 |
84
+ | 0.0019 | 3.0 | 2688 | 0.1652 | 0.9102 | 0.9186 | 0.9143 | 0.9828 |
85
+ | 0.0013 | 4.0 | 3584 | 0.1690 | 0.9057 | 0.9187 | 0.9122 | 0.9825 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.34.1
91
+ - Pytorch 2.1.0+cu118
92
+ - Datasets 2.14.5
93
+ - Tokenizers 0.14.1
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:55b62cf16feab225683def1578bc3c57d0616eca2113274e0a4f314f472af7b3
3
  size 430980710
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ca52975e3eae800569779b2a1942d1b471c51a21a4f35ffc16cf41aa1426f92
3
  size 430980710