Badsims's picture
Model and Inference script
3fab3ed verified
raw
history blame
4.85 kB
using UnityEngine;
using Microsoft.ML.Tokenizers;
using Unity.Sentis;
using System.IO;
using System.Linq;
using System.Collections.Generic;
using System.Collections;
public class Phi3Claude : MonoBehaviour
{
IWorker worker;
LlamaTokenizer tokenizer;
List<int> tokens = new();
TensorInt inputTensor, attentionMaskTensor, positionIdsTensor;
TensorFloat outputLogits;
int maxTokens = 100; // Maximum number of tokens to generate
List<int> eosTokens; // End of sequence tokens
private IBackend backend;
private void Start()
{
var tokenizerModelPath = Path.Combine(Application.streamingAssetsPath, "Phi35/tokenizer.model");
var sentisModelPath = Path.Combine(Application.streamingAssetsPath, "Phi35/model_Uint8.sentis");
var configPath = Path.Combine(Application.streamingAssetsPath, "Phi35/generation_config.json");
var model = ModelLoader.Load(sentisModelPath);
worker = WorkerFactory.CreateWorker(BackendType.GPUCompute, model);
Dictionary<string, int> specialTokens = TokenizerUtils.LoadSpecialTokens(Path.Combine(Application.streamingAssetsPath, "Phi35/added_tokens.json"));
using (Stream tokenizerModelStream = new FileStream(tokenizerModelPath, FileMode.Open, FileAccess.Read))
{
tokenizer = LlamaTokenizer.Create(
tokenizerModelStream,
addBeginOfSentence: true,
addEndOfSentence: false,
specialTokens: specialTokens
);
}
eosTokens = TokenizerUtils.IdentifyEOSTokens(configPath);
backend = WorkerFactory.CreateBackend(BackendType.GPUCompute);
Generate("Hello, how is your day?");
}
public void Generate(string userPrompt, string systemPrompt = "You are a helpful assistant.")
{
string completePrompt = Phi3InputFormatter.FormatChatInput(systemPrompt, userPrompt);
Debug.Log("Complete prompt : " + completePrompt);
int[] inputIds = tokenizer.EncodeToIds(completePrompt).ToArray();
Debug.Log($"Tokenized input: [{string.Join(", ", inputIds)}]");
Debug.Log($"Decoded tokens: [{string.Join(", ", tokenizer.Decode(inputIds, true))}]");
tokens.Clear();
tokens.AddRange(inputIds);
StartCoroutine(GenerateSequence());
}
private IEnumerator GenerateSequence()
{
for (int i = 0; i < maxTokens; i++)
{
RefreshTensors(tokens.ToArray());
worker.Execute(new Dictionary<string, Tensor>()
{
{"input_ids", inputTensor},
{"attention_mask", attentionMaskTensor},
{"position_ids", positionIdsTensor}
}); // > 15ms (/!\ should be async)
outputLogits = worker.PeekOutput("logits") as TensorFloat; // Async
outputLogits.ReadbackRequest(); // Async
yield return outputLogits.IsReadbackRequestDone(); // 236 ms
tokens.Add(ProcessLogits()); // > 200ms
int nextToken = tokens[tokens.Count - 1];
CleanupTensors();
if (eosTokens.Contains(nextToken))
break;
}
string generatedText = tokenizer.Decode(tokens.ToArray(), true); // 0 ms
Debug.Log($"Generated sequence: {generatedText}");
}
private int ProcessLogits()
{
// Greedy sampling for simplicity
using var argMaxTensor = TensorInt.AllocNoData(new TensorShape(1, outputLogits.shape[1]));
backend.ArgMax(outputLogits, argMaxTensor, axis: 2, selectLastIndex: false);
var argMaxTensorArray = argMaxTensor.ToReadOnlyArray(); // TODO : investigate on why it's long to process
int nextToken = argMaxTensorArray[outputLogits.shape[1] - 1];
Debug.Log($"<color=orange>Next token: [ID = {nextToken}, STR = \"{tokenizer.Decode(new[] { nextToken }, true)}\"]</color>");
return nextToken;
}
private void RefreshTensors(int[] ids)
{
// Update input tensors with the full context
inputTensor = new TensorInt(new TensorShape(1, ids.Length), ids);
attentionMaskTensor = new TensorInt(new TensorShape(1, ids.Length), Enumerable.Repeat(1, ids.Length).ToArray());
positionIdsTensor = new TensorInt(new TensorShape(1, ids.Length), Enumerable.Range(0, ids.Length).ToArray());
}
private void CleanupTensors()
{
inputTensor?.Dispose();
attentionMaskTensor?.Dispose();
positionIdsTensor?.Dispose();
outputLogits?.Dispose();
}
private void OnDestroy() {
CleanupTensors();
worker?.Dispose();
backend?.Dispose();
}
}