|
import json
|
|
import nltk
|
|
from nltk.corpus import stopwords
|
|
from nltk.tokenize import word_tokenize, sent_tokenize
|
|
from nltk.stem import PorterStemmer, WordNetLemmatizer
|
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
from sklearn.metrics.pairwise import cosine_similarity
|
|
import numpy as np
|
|
import os
|
|
import math
|
|
import pickle
|
|
import joblib
|
|
import multiprocessing
|
|
from concurrent.futures import ProcessPoolExecutor
|
|
from tqdm import tqdm
|
|
from collections import defaultdict
|
|
|
|
|
|
nltk.download('punkt')
|
|
nltk.download('stopwords')
|
|
nltk.download('averaged_perceptron_tagger')
|
|
nltk.download('maxent_ne_chunker')
|
|
nltk.download('words')
|
|
nltk.download('wordnet')
|
|
nltk.download('omw-1.4')
|
|
|
|
|
|
|
|
def get_wordnet_pos(treebank_tag):
|
|
if treebank_tag.startswith('J'):
|
|
return nltk.corpus.wordnet.ADJ
|
|
elif treebank_tag.startswith('V'):
|
|
return nltk.corpus.wordnet.VERB
|
|
elif treebank_tag.startswith('N'):
|
|
return nltk.corpus.wordnet.NOUN
|
|
elif treebank_tag.startswith('R'):
|
|
return nltk.corpus.wordnet.ADV
|
|
else:
|
|
return nltk.corpus.wordnet.NOUN
|
|
|
|
class NLPModel:
|
|
def __init__(self):
|
|
|
|
|
|
|
|
self.tfidf = TfidfVectorizer(tokenizer=self.tokenize, lowercase=False)
|
|
|
|
self.training_tfidf = None
|
|
|
|
|
|
|
|
self.flattened_sentences = []
|
|
self.training_tagged = []
|
|
self.answers = []
|
|
|
|
|
|
|
|
def tokenize(self, text):
|
|
|
|
return text
|
|
|
|
def preprocess_text(self, text):
|
|
|
|
sentences = sent_tokenize(text)
|
|
|
|
preprocessed_sentences = []
|
|
batch_size = 50
|
|
for i in range(0, len(sentences), batch_size):
|
|
batch_sentences = sentences[i:i + batch_size]
|
|
batch_words = [word_tokenize(sentence) for sentence in batch_sentences]
|
|
|
|
|
|
stop_words = set(stopwords.words('english'))
|
|
filtered_words = [[word for word in words if word.lower() not in stop_words] for words in batch_words]
|
|
|
|
|
|
stemmer = PorterStemmer()
|
|
stemmed_words = [[stemmer.stem(word) for word in words] for words in filtered_words]
|
|
|
|
|
|
pos_tags = [nltk.pos_tag(words) for words in stemmed_words]
|
|
|
|
|
|
lemmatizer = WordNetLemmatizer()
|
|
lemmatized_words = [[lemmatizer.lemmatize(word, pos=get_wordnet_pos(tag)) for word, tag in pos] for pos in pos_tags]
|
|
|
|
preprocessed_sentences.extend(lemmatized_words)
|
|
|
|
return preprocessed_sentences
|
|
|
|
def process_data(self, data_json):
|
|
|
|
batch_size = 10000
|
|
num_processes = int(multiprocessing.cpu_count()/2)
|
|
|
|
batches = [data_json[i:i + batch_size] for i in range(0, len(data_json), batch_size)]
|
|
|
|
|
|
|
|
|
|
sentence_answers = []
|
|
|
|
with ProcessPoolExecutor(max_workers=num_processes) as executor:
|
|
results = list(tqdm(executor.map(self.process_data_batch, batches), total=len(batches)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for batch_result in results:
|
|
for result in batch_result:
|
|
sentence_answers.extend(result)
|
|
|
|
|
|
|
|
answer_groups = defaultdict(list)
|
|
|
|
|
|
for sentence, answer in sentence_answers:
|
|
answer_groups[answer].extend(sentence)
|
|
|
|
|
|
|
|
|
|
sentence_answers.extend([(sentence,answer) for answer, sentence in answer_groups.items()])
|
|
|
|
self.flattened_sentences.extend([x[0] for x in sentence_answers])
|
|
self.training_tagged.extend([x[1] for x in sentence_answers])
|
|
|
|
|
|
|
|
|
|
|
|
def process_data_batch(self, batch):
|
|
batch_results = []
|
|
|
|
|
|
|
|
for data in batch:
|
|
text = data["text"]
|
|
answer = data["answer"]
|
|
preprocessed_sentences = self.preprocess_text(text)
|
|
training_tagged = [(sentence, answer) for sentence in preprocessed_sentences]
|
|
|
|
|
|
|
|
|
|
batch_results.append(training_tagged)
|
|
|
|
|
|
|
|
return batch_results
|
|
|
|
def train_model(self):
|
|
|
|
|
|
|
|
if(self.flattened_sentences):
|
|
self.training_tfidf = self.tfidf.fit_transform(self.flattened_sentences)
|
|
self.flattened_sentences = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def save(self, file_path):
|
|
model_data = {
|
|
'training_tagged': list(self.training_tagged),
|
|
'tfidf': self.tfidf,
|
|
'training_tfidf': self.training_tfidf
|
|
}
|
|
|
|
with open(file_path, 'wb') as f:
|
|
joblib.dump(model_data, f)
|
|
|
|
def load(self, file_path):
|
|
|
|
if os.path.exists(file_path):
|
|
with open(file_path, 'rb') as f:
|
|
print(os.path.exists(file_path))
|
|
model_data = joblib.load(file_path)
|
|
self.training_tagged = list(model_data['training_tagged'])
|
|
self.tfidf = model_data['tfidf']
|
|
print(self.tfidf)
|
|
self.training_tfidf = model_data['training_tfidf']
|
|
|
|
return self
|
|
|
|
def predict(self, input_data):
|
|
|
|
new_text_processed = self.preprocess_text(input_data)
|
|
new_text_processed_tfidf = self.tfidf.transform(new_text_processed)
|
|
training_tfidf = self.training_tfidf
|
|
|
|
|
|
sentence_similarities = cosine_similarity(new_text_processed_tfidf, training_tfidf)
|
|
|
|
|
|
similarities_max = {}
|
|
answers = []
|
|
|
|
|
|
for similarity_row in sentence_similarities:
|
|
for answer, similarity in zip(self.training_tagged, similarity_row):
|
|
if isinstance(answer, list):
|
|
continue
|
|
|
|
if answer not in similarities_max or similarity > similarities_max[answer]:
|
|
similarities_max[answer] = similarity
|
|
|
|
if not answers:
|
|
answers.extend(similarities_max.keys())
|
|
|
|
|
|
total_similarities = np.array([similarities_max[answer] for answer in answers])
|
|
closest_index = np.argmax(total_similarities)
|
|
closest_answer = answers[closest_index]
|
|
|
|
return total_similarities[closest_index], closest_answer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def evaluate(self, test_data, labels):
|
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
import argparse
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument('--data', type=str)
|
|
parser.add_argument('--model', type=str)
|
|
parser.add_argument('--predict', type=str)
|
|
|
|
flags = parser.parse_args()
|
|
|
|
model = NLPModel()
|
|
|
|
if flags.data:
|
|
with open(flags.data, 'r') as data_file:
|
|
data_json = json.load(data_file)
|
|
|
|
model.process_data(data_json)
|
|
model.train_model()
|
|
print(model.predict("My name is bobby, bobby newport. your name is jeff?"))
|
|
model.save("model.pkl")
|
|
|
|
if flags.model:
|
|
model.load(flags.model)
|
|
|
|
if flags.predict:
|
|
print(model.predict(flags.predict))
|
|
|
|
|
|
|
|
|
|
|
|
|