BackTo2014
commited on
Commit
•
5135265
1
Parent(s):
41a5094
Update README.md
Browse files
README.md
CHANGED
@@ -5,9 +5,67 @@ This is a simple attempt. I trained with CIFAR-10 dataset.
|
|
5 |
## Usage
|
6 |
|
7 |
```python
|
8 |
-
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
```
|
|
|
5 |
## Usage
|
6 |
|
7 |
```python
|
8 |
+
# 生成图像有误...以下代码需修改!!!
|
9 |
|
10 |
+
import torch
|
11 |
+
from diffusers import DDPMPipeline, DDPMScheduler
|
12 |
+
from diffusers.models import UNet2DModel
|
13 |
+
from PIL import Image
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
|
16 |
+
# 模型ID
|
17 |
+
model_id = "BackTo2014/DDPM-test"
|
18 |
+
|
19 |
+
# 检查设备
|
20 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
21 |
+
|
22 |
+
# 加载UNet模型和配置文件
|
23 |
+
try:
|
24 |
+
unet = UNet2DModel.from_pretrained(
|
25 |
+
model_id,
|
26 |
+
ignore_mismatched_sizes=True,
|
27 |
+
low_cpu_mem_usage=False,
|
28 |
+
).to(device) # 将模型移动到GPU上
|
29 |
+
except ValueError as e:
|
30 |
+
print(f"Error loading model: {e}")
|
31 |
+
|
32 |
+
# 获取模型的state_dict
|
33 |
+
state_dict = unet.state_dict()
|
34 |
+
|
35 |
+
# 手动初始化缺失的权重
|
36 |
+
for key in e.args[0].split(': ')[1].split(', '):
|
37 |
+
name, size = key.split('.')
|
38 |
+
size = tuple(map(int, size.replace(')', '').replace('(', '').split(',')))
|
39 |
+
|
40 |
+
# 创建随机权重
|
41 |
+
new_weight = torch.randn(size).to(device) # 将权重移动到GPU上
|
42 |
+
|
43 |
+
# 更新state_dict
|
44 |
+
state_dict[name] = new_weight
|
45 |
+
|
46 |
+
# 加载更新后的state_dict
|
47 |
+
unet.load_state_dict(state_dict).to(device) # 将模型移动到GPU上
|
48 |
+
|
49 |
+
# 如果sample_size未定义,则手动设置
|
50 |
+
if unet.config.sample_size is None:
|
51 |
+
# 假设样本尺寸为 32x32
|
52 |
+
unet.config.sample_size = (32, 32)
|
53 |
+
|
54 |
+
# 初始化Scheduler
|
55 |
+
scheduler = DDPMScheduler.from_config(model_id)
|
56 |
+
|
57 |
+
# 创建DDPMPipeline
|
58 |
+
pipeline = DDPMPipeline(unet=unet, scheduler=scheduler)
|
59 |
+
|
60 |
+
# 生成图像
|
61 |
+
generator = torch.manual_seed(0)
|
62 |
+
image = pipeline(num_inference_steps=1000, generator=generator).images[0]
|
63 |
+
|
64 |
+
# 使用matplotlib显示图像
|
65 |
+
plt.imshow(image)
|
66 |
+
plt.axis('off') # 不显示坐标轴
|
67 |
+
plt.show()
|
68 |
+
|
69 |
+
# 保存图像
|
70 |
+
image.save("generated_image.png")
|
71 |
```
|