Upload JointCTCAttentionEncoderDecoder
Browse files- auto_wrappers.py +132 -0
- config.json +283 -0
- configuration_decred.py +23 -0
- ctc_scorer.py +365 -0
- e_branchformer.py +252 -0
- embeddings.py +86 -0
- extractors.py +32 -0
- generation.py +61 -0
- model.safetensors +3 -0
- modeling_decred.py +563 -0
- multi_head_gpt2.py +160 -0
- residual_clasiffier_gpt2.py +99 -0
auto_wrappers.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import os
|
3 |
+
|
4 |
+
from transformers import AutoConfig, AutoModelForCTC, PretrainedConfig
|
5 |
+
from transformers.dynamic_module_utils import (
|
6 |
+
get_class_from_dynamic_module,
|
7 |
+
resolve_trust_remote_code,
|
8 |
+
)
|
9 |
+
from transformers.models.auto.auto_factory import _get_model_class
|
10 |
+
|
11 |
+
from .extractors import Conv2dFeatureExtractor
|
12 |
+
|
13 |
+
|
14 |
+
class FeatureExtractionInitModifier(type):
|
15 |
+
def __new__(cls, name, bases, dct):
|
16 |
+
# Create the class using the original definition
|
17 |
+
new_cls = super().__new__(cls, name, bases, dct)
|
18 |
+
|
19 |
+
# Save the original __init__ method
|
20 |
+
original_init = new_cls.__init__
|
21 |
+
|
22 |
+
# Modify the __init__ method dynamically
|
23 |
+
def new_init(self, *args, **kwargs):
|
24 |
+
original_init(self, *args, **kwargs)
|
25 |
+
if self.config.expect_2d_input:
|
26 |
+
getattr(self, self.base_model_prefix).feature_extractor = Conv2dFeatureExtractor(self.config)
|
27 |
+
|
28 |
+
# Replace the __init__ method with the modified version
|
29 |
+
new_cls.__init__ = new_init
|
30 |
+
|
31 |
+
return new_cls
|
32 |
+
|
33 |
+
|
34 |
+
class CustomAutoModelForCTC(AutoModelForCTC):
|
35 |
+
@classmethod
|
36 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
37 |
+
config = kwargs.pop("config", None)
|
38 |
+
trust_remote_code = kwargs.pop("trust_remote_code", None)
|
39 |
+
kwargs["_from_auto"] = True
|
40 |
+
hub_kwargs_names = [
|
41 |
+
"cache_dir",
|
42 |
+
"code_revision",
|
43 |
+
"force_download",
|
44 |
+
"local_files_only",
|
45 |
+
"proxies",
|
46 |
+
"resume_download",
|
47 |
+
"revision",
|
48 |
+
"subfolder",
|
49 |
+
"use_auth_token",
|
50 |
+
]
|
51 |
+
hub_kwargs = {name: kwargs.pop(name) for name in hub_kwargs_names if name in kwargs}
|
52 |
+
if not isinstance(config, PretrainedConfig):
|
53 |
+
kwargs_orig = copy.deepcopy(kwargs)
|
54 |
+
# ensure not to pollute the config object with torch_dtype="auto" - since it's
|
55 |
+
# meaningless in the context of the config object - torch.dtype values are acceptable
|
56 |
+
if kwargs.get("torch_dtype", None) == "auto":
|
57 |
+
_ = kwargs.pop("torch_dtype")
|
58 |
+
|
59 |
+
config, kwargs = AutoConfig.from_pretrained(
|
60 |
+
pretrained_model_name_or_path,
|
61 |
+
return_unused_kwargs=True,
|
62 |
+
trust_remote_code=trust_remote_code,
|
63 |
+
**hub_kwargs,
|
64 |
+
**kwargs,
|
65 |
+
)
|
66 |
+
|
67 |
+
# if torch_dtype=auto was passed here, ensure to pass it on
|
68 |
+
if kwargs_orig.get("torch_dtype", None) == "auto":
|
69 |
+
kwargs["torch_dtype"] = "auto"
|
70 |
+
|
71 |
+
has_remote_code = hasattr(config, "auto_map") and cls.__name__ in config.auto_map
|
72 |
+
has_local_code = type(config) in cls._model_mapping.keys()
|
73 |
+
trust_remote_code = resolve_trust_remote_code(
|
74 |
+
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
|
75 |
+
)
|
76 |
+
if has_remote_code and trust_remote_code:
|
77 |
+
class_ref = config.auto_map[cls.__name__]
|
78 |
+
model_class = get_class_from_dynamic_module(
|
79 |
+
class_ref, pretrained_model_name_or_path, **hub_kwargs, **kwargs
|
80 |
+
)
|
81 |
+
model_class = FeatureExtractionInitModifier(model_class.__name__, (model_class,), {})
|
82 |
+
_ = hub_kwargs.pop("code_revision", None)
|
83 |
+
if os.path.isdir(pretrained_model_name_or_path):
|
84 |
+
model_class.register_for_auto_class(cls.__name__)
|
85 |
+
else:
|
86 |
+
cls.register(config.__class__, model_class, exist_ok=True)
|
87 |
+
return model_class.from_pretrained(
|
88 |
+
pretrained_model_name_or_path, *model_args, config=config, **hub_kwargs, **kwargs
|
89 |
+
)
|
90 |
+
elif type(config) in cls._model_mapping.keys():
|
91 |
+
model_class = _get_model_class(config, cls._model_mapping)
|
92 |
+
model_class = FeatureExtractionInitModifier(model_class.__name__, (model_class,), {})
|
93 |
+
return model_class.from_pretrained(
|
94 |
+
pretrained_model_name_or_path, *model_args, config=config, **hub_kwargs, **kwargs
|
95 |
+
)
|
96 |
+
raise ValueError(
|
97 |
+
f"Unrecognized configuration class {config.__class__} for this kind of AutoModel: {cls.__name__}.\n"
|
98 |
+
f"Model type should be one of {', '.join(c.__name__ for c in cls._model_mapping.keys())}."
|
99 |
+
)
|
100 |
+
|
101 |
+
@classmethod
|
102 |
+
def from_config(cls, config, **kwargs):
|
103 |
+
trust_remote_code = kwargs.pop("trust_remote_code", None)
|
104 |
+
has_remote_code = hasattr(config, "auto_map") and cls.__name__ in config.auto_map
|
105 |
+
has_local_code = type(config) in cls._model_mapping.keys()
|
106 |
+
trust_remote_code = resolve_trust_remote_code(
|
107 |
+
trust_remote_code, config._name_or_path, has_local_code, has_remote_code
|
108 |
+
)
|
109 |
+
|
110 |
+
if has_remote_code and trust_remote_code:
|
111 |
+
class_ref = config.auto_map[cls.__name__]
|
112 |
+
if "--" in class_ref:
|
113 |
+
repo_id, class_ref = class_ref.split("--")
|
114 |
+
else:
|
115 |
+
repo_id = config.name_or_path
|
116 |
+
model_class = get_class_from_dynamic_module(class_ref, repo_id, **kwargs)
|
117 |
+
if os.path.isdir(config._name_or_path):
|
118 |
+
model_class.register_for_auto_class(cls.__name__)
|
119 |
+
else:
|
120 |
+
cls.register(config.__class__, model_class, exist_ok=True)
|
121 |
+
_ = kwargs.pop("code_revision", None)
|
122 |
+
model_class = FeatureExtractionInitModifier(model_class.__name__, (model_class,), {})
|
123 |
+
return model_class._from_config(config, **kwargs)
|
124 |
+
elif type(config) in cls._model_mapping.keys():
|
125 |
+
model_class = _get_model_class(config, cls._model_mapping)
|
126 |
+
model_class = FeatureExtractionInitModifier(model_class.__name__, (model_class,), {})
|
127 |
+
return model_class._from_config(config, **kwargs)
|
128 |
+
|
129 |
+
raise ValueError(
|
130 |
+
f"Unrecognized configuration class {config.__class__} for this kind of AutoModel: {cls.__name__}.\n"
|
131 |
+
f"Model type should be one of {', '.join(c.__name__ for c in cls._model_mapping.keys())}."
|
132 |
+
)
|
config.json
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/mnt/matylda5/ipoloka/IS24_DeCRED/multidomain/normalised_data/DeCRED_small/models/checkpoint-171648/",
|
3 |
+
"architectures": [
|
4 |
+
"JointCTCAttentionEncoderDecoder"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_decred.JointCTCAttentionEncoderDecoderConfig",
|
8 |
+
"AutoModelForSpeechSeq2Seq": "modeling_decred.JointCTCAttentionEncoderDecoder"
|
9 |
+
},
|
10 |
+
"ctc_weight": 0.3,
|
11 |
+
"decoder": {
|
12 |
+
"_name_or_path": "Lakoc/gpt2_256h_6l_add_head3_04",
|
13 |
+
"activation_function": "gelu_new",
|
14 |
+
"add_cross_attention": true,
|
15 |
+
"architectures": null,
|
16 |
+
"attn_pdrop": 0.1,
|
17 |
+
"average_logits": false,
|
18 |
+
"bad_words_ids": null,
|
19 |
+
"begin_suppress_tokens": null,
|
20 |
+
"bos_token_id": 0,
|
21 |
+
"chunk_size_feed_forward": 0,
|
22 |
+
"cross_attention_hidden_size": null,
|
23 |
+
"decoder_start_token_id": null,
|
24 |
+
"diversity_penalty": 0.0,
|
25 |
+
"do_sample": false,
|
26 |
+
"early_stopping": false,
|
27 |
+
"embd_pdrop": 0.1,
|
28 |
+
"encoder_no_repeat_ngram_size": 0,
|
29 |
+
"eos_token_id": 1,
|
30 |
+
"exponential_decay_length_penalty": null,
|
31 |
+
"finetuning_task": null,
|
32 |
+
"forced_bos_token_id": null,
|
33 |
+
"forced_eos_token_id": null,
|
34 |
+
"head_locations": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"head_weights": [
|
38 |
+
0.6,
|
39 |
+
0.4
|
40 |
+
],
|
41 |
+
"id2label": {
|
42 |
+
"0": "LABEL_0",
|
43 |
+
"1": "LABEL_1"
|
44 |
+
},
|
45 |
+
"initializer_range": 0.02,
|
46 |
+
"is_decoder": true,
|
47 |
+
"is_encoder_decoder": false,
|
48 |
+
"label2id": {
|
49 |
+
"LABEL_0": 0,
|
50 |
+
"LABEL_1": 1
|
51 |
+
},
|
52 |
+
"layer_norm_epsilon": 1e-05,
|
53 |
+
"length_penalty": 1.0,
|
54 |
+
"max_length": 20,
|
55 |
+
"min_length": 0,
|
56 |
+
"model_type": "gpt2-multi-head",
|
57 |
+
"n_embd": 256,
|
58 |
+
"n_head": 4,
|
59 |
+
"n_inner": 2048,
|
60 |
+
"n_layer": 6,
|
61 |
+
"n_positions": 1024,
|
62 |
+
"no_repeat_ngram_size": 0,
|
63 |
+
"num_beam_groups": 1,
|
64 |
+
"num_beams": 1,
|
65 |
+
"num_return_sequences": 1,
|
66 |
+
"output_attentions": false,
|
67 |
+
"output_hidden_states": false,
|
68 |
+
"output_scores": false,
|
69 |
+
"pad_token_id": null,
|
70 |
+
"pos_emb_fixed": true,
|
71 |
+
"prefix": null,
|
72 |
+
"problem_type": null,
|
73 |
+
"pruned_heads": {},
|
74 |
+
"remove_invalid_values": false,
|
75 |
+
"reorder_and_upcast_attn": false,
|
76 |
+
"repetition_penalty": 1.0,
|
77 |
+
"resid_pdrop": 0.1,
|
78 |
+
"return_dict": true,
|
79 |
+
"return_dict_in_generate": false,
|
80 |
+
"scale_attn_by_inverse_layer_idx": false,
|
81 |
+
"scale_attn_weights": true,
|
82 |
+
"sep_token_id": null,
|
83 |
+
"summary_activation": null,
|
84 |
+
"summary_first_dropout": 0.1,
|
85 |
+
"summary_proj_to_labels": true,
|
86 |
+
"summary_type": "cls_index",
|
87 |
+
"summary_use_proj": true,
|
88 |
+
"suppress_tokens": null,
|
89 |
+
"task_specific_params": null,
|
90 |
+
"temperature": 1.0,
|
91 |
+
"tf_legacy_loss": false,
|
92 |
+
"tie_additional_weights": false,
|
93 |
+
"tie_encoder_decoder": false,
|
94 |
+
"tie_word_embeddings": false,
|
95 |
+
"tokenizer_class": null,
|
96 |
+
"top_k": 50,
|
97 |
+
"top_p": 1.0,
|
98 |
+
"torch_dtype": null,
|
99 |
+
"torchscript": false,
|
100 |
+
"typical_p": 1.0,
|
101 |
+
"use_bfloat16": false,
|
102 |
+
"use_cache": true,
|
103 |
+
"vocab_size": 5000
|
104 |
+
},
|
105 |
+
"decoder_pos_emb_fixed": true,
|
106 |
+
"decoder_start_token_id": 0,
|
107 |
+
"decoder_vocab_size": 5000,
|
108 |
+
"encoder": {
|
109 |
+
"_name_or_path": "Lakoc/fisher_ebranchformer_enc_12_layers_fixed",
|
110 |
+
"activation_dropout": 0.1,
|
111 |
+
"adapter_attn_dim": null,
|
112 |
+
"adapter_kernel_size": 3,
|
113 |
+
"adapter_stride": 2,
|
114 |
+
"add_adapter": false,
|
115 |
+
"add_cross_attention": false,
|
116 |
+
"apply_spec_augment": false,
|
117 |
+
"architectures": null,
|
118 |
+
"attention_dropout": 0.1,
|
119 |
+
"bad_words_ids": null,
|
120 |
+
"begin_suppress_tokens": null,
|
121 |
+
"bos_token_id": 1,
|
122 |
+
"chunk_size_feed_forward": 0,
|
123 |
+
"classifier_proj_size": 256,
|
124 |
+
"codevector_dim": 256,
|
125 |
+
"conformer_conv_dropout": 0.1,
|
126 |
+
"contrastive_logits_temperature": 0.1,
|
127 |
+
"conv_bias": false,
|
128 |
+
"conv_depthwise_kernel_size": 31,
|
129 |
+
"conv_dim": [
|
130 |
+
256,
|
131 |
+
256
|
132 |
+
],
|
133 |
+
"conv_kernel": [
|
134 |
+
3,
|
135 |
+
3
|
136 |
+
],
|
137 |
+
"conv_stride": [
|
138 |
+
2,
|
139 |
+
2
|
140 |
+
],
|
141 |
+
"cross_attention_hidden_size": null,
|
142 |
+
"csgu_activation": "identity",
|
143 |
+
"csgu_conv_dropout": 0.1,
|
144 |
+
"csgu_kernel_size": 31,
|
145 |
+
"csgu_use_linear_after_conv": false,
|
146 |
+
"ctc_loss_reduction": "mean",
|
147 |
+
"ctc_zero_infinity": true,
|
148 |
+
"decoder_start_token_id": null,
|
149 |
+
"diversity_loss_weight": 0.1,
|
150 |
+
"diversity_penalty": 0.0,
|
151 |
+
"do_sample": false,
|
152 |
+
"do_stable_layer_norm": false,
|
153 |
+
"early_stopping": false,
|
154 |
+
"encoder_no_repeat_ngram_size": 0,
|
155 |
+
"eos_token_id": 2,
|
156 |
+
"expect_2d_input": true,
|
157 |
+
"exponential_decay_length_penalty": null,
|
158 |
+
"fe_position_embeddings": false,
|
159 |
+
"feat_extract_activation": "gelu",
|
160 |
+
"feat_extract_norm": "group",
|
161 |
+
"feat_proj_dropout": 0.0,
|
162 |
+
"feat_quantizer_dropout": 0.0,
|
163 |
+
"final_dropout": 0.1,
|
164 |
+
"finetuning_task": null,
|
165 |
+
"forced_bos_token_id": null,
|
166 |
+
"forced_eos_token_id": null,
|
167 |
+
"hidden_act": "gelu",
|
168 |
+
"hidden_dropout": 0.1,
|
169 |
+
"hidden_size": 256,
|
170 |
+
"id2label": {
|
171 |
+
"0": "LABEL_0",
|
172 |
+
"1": "LABEL_1"
|
173 |
+
},
|
174 |
+
"initializer_range": 0.02,
|
175 |
+
"intermediate_size": 1024,
|
176 |
+
"is_causal": false,
|
177 |
+
"is_decoder": false,
|
178 |
+
"is_encoder_decoder": false,
|
179 |
+
"label2id": {
|
180 |
+
"LABEL_0": 0,
|
181 |
+
"LABEL_1": 1
|
182 |
+
},
|
183 |
+
"layer_norm_eps": 1e-05,
|
184 |
+
"layerdrop": 0.0,
|
185 |
+
"length_penalty": 1.0,
|
186 |
+
"mask_feature_length": 10,
|
187 |
+
"mask_feature_min_masks": 0,
|
188 |
+
"mask_feature_prob": 0.0,
|
189 |
+
"mask_time_length": 10,
|
190 |
+
"mask_time_min_masks": 2,
|
191 |
+
"mask_time_prob": 0.05,
|
192 |
+
"max_length": 20,
|
193 |
+
"max_source_positions": 1024,
|
194 |
+
"merge_conv_kernel": 31,
|
195 |
+
"min_length": 0,
|
196 |
+
"model_type": "wav2vec2-ebranchformer",
|
197 |
+
"no_repeat_ngram_size": 0,
|
198 |
+
"num_adapter_layers": 3,
|
199 |
+
"num_attention_heads": 4,
|
200 |
+
"num_beam_groups": 1,
|
201 |
+
"num_beams": 1,
|
202 |
+
"num_codevector_groups": 2,
|
203 |
+
"num_codevectors_per_group": 320,
|
204 |
+
"num_conv_pos_embedding_groups": 16,
|
205 |
+
"num_conv_pos_embeddings": 128,
|
206 |
+
"num_feat_extract_layers": 2,
|
207 |
+
"num_hidden_layers": 12,
|
208 |
+
"num_mel_bins": 80,
|
209 |
+
"num_negatives": 100,
|
210 |
+
"num_return_sequences": 1,
|
211 |
+
"output_attentions": false,
|
212 |
+
"output_hidden_size": 256,
|
213 |
+
"output_hidden_states": false,
|
214 |
+
"output_scores": false,
|
215 |
+
"pad_token_id": 3,
|
216 |
+
"position_embeddings_type": "relative",
|
217 |
+
"prefix": null,
|
218 |
+
"problem_type": null,
|
219 |
+
"proj_codevector_dim": 256,
|
220 |
+
"pruned_heads": {},
|
221 |
+
"remove_invalid_values": false,
|
222 |
+
"repetition_penalty": 1.0,
|
223 |
+
"return_dict": true,
|
224 |
+
"return_dict_in_generate": false,
|
225 |
+
"rotary_embedding_base": 10000,
|
226 |
+
"second_dim_input_size": 80,
|
227 |
+
"sep_token_id": null,
|
228 |
+
"suppress_tokens": null,
|
229 |
+
"task_specific_params": null,
|
230 |
+
"tdnn_dilation": [
|
231 |
+
1,
|
232 |
+
2,
|
233 |
+
3,
|
234 |
+
1,
|
235 |
+
1
|
236 |
+
],
|
237 |
+
"tdnn_dim": [
|
238 |
+
512,
|
239 |
+
512,
|
240 |
+
512,
|
241 |
+
512,
|
242 |
+
1500
|
243 |
+
],
|
244 |
+
"tdnn_kernel": [
|
245 |
+
5,
|
246 |
+
3,
|
247 |
+
3,
|
248 |
+
1,
|
249 |
+
1
|
250 |
+
],
|
251 |
+
"temperature": 1.0,
|
252 |
+
"tf_legacy_loss": false,
|
253 |
+
"tie_encoder_decoder": false,
|
254 |
+
"tie_word_embeddings": true,
|
255 |
+
"tokenizer_class": null,
|
256 |
+
"top_k": 50,
|
257 |
+
"top_p": 1.0,
|
258 |
+
"torch_dtype": null,
|
259 |
+
"torchscript": false,
|
260 |
+
"typical_p": 1.0,
|
261 |
+
"use_bfloat16": false,
|
262 |
+
"use_fbanks": true,
|
263 |
+
"use_macaron_ff": true,
|
264 |
+
"use_weighted_layer_sum": false,
|
265 |
+
"vocab_size": 5000,
|
266 |
+
"xvector_output_dim": 512
|
267 |
+
},
|
268 |
+
"encoder_ctc_loss_reduction": "mean",
|
269 |
+
"encoder_expect_2d_input": true,
|
270 |
+
"encoder_layerdrop": 0.0,
|
271 |
+
"encoder_pad_token_id": 3,
|
272 |
+
"encoder_second_dim_input_size": 80,
|
273 |
+
"encoder_vocab_size": 5000,
|
274 |
+
"is_encoder_decoder": true,
|
275 |
+
"lsm_factor": 0.1,
|
276 |
+
"model_type": "joint_aed_ctc_speech-encoder-decoder",
|
277 |
+
"pad_token_id": 3,
|
278 |
+
"shared_lm_head": false,
|
279 |
+
"tie_word_embeddings": false,
|
280 |
+
"tokenizer_class": "<class 'transformers.tokenization_utils_fast.PreTrainedTokenizerFast'>",
|
281 |
+
"torch_dtype": "float32",
|
282 |
+
"transformers_version": "4.39.3"
|
283 |
+
}
|
configuration_decred.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoConfig, AutoModelForCausalLM, SpeechEncoderDecoderConfig
|
2 |
+
|
3 |
+
from .auto_wrappers import CustomAutoModelForCTC
|
4 |
+
from .e_branchformer import Wav2Vec2EBranchformerConfig, Wav2Vec2EBranchformerForCTC
|
5 |
+
from .multi_head_gpt2 import GPT2LMMultiHeadModel, GPT2MultiHeadConfig
|
6 |
+
from .residual_clasiffier_gpt2 import (
|
7 |
+
GPT2ResidualsLMHeadConfig,
|
8 |
+
GPT2ResidualsLMHeadModel,
|
9 |
+
)
|
10 |
+
|
11 |
+
AutoConfig.register("gpt2-multi-head", GPT2MultiHeadConfig)
|
12 |
+
AutoModelForCausalLM.register(GPT2MultiHeadConfig, GPT2LMMultiHeadModel)
|
13 |
+
|
14 |
+
AutoConfig.register("gpt2-residuals-head", GPT2ResidualsLMHeadConfig)
|
15 |
+
AutoModelForCausalLM.register(GPT2ResidualsLMHeadConfig, GPT2ResidualsLMHeadModel)
|
16 |
+
|
17 |
+
AutoConfig.register("wav2vec2-ebranchformer", Wav2Vec2EBranchformerConfig)
|
18 |
+
CustomAutoModelForCTC.register(Wav2Vec2EBranchformerConfig, Wav2Vec2EBranchformerForCTC)
|
19 |
+
|
20 |
+
|
21 |
+
class JointCTCAttentionEncoderDecoderConfig(SpeechEncoderDecoderConfig):
|
22 |
+
model_type = "joint_aed_ctc_speech-encoder-decoder"
|
23 |
+
is_composition = True
|
ctc_scorer.py
ADDED
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pylint: skip-file
|
2 |
+
# Copied from: https://github.com/espnet/espnet/blob/master/espnet/nets/ctc_prefix_score.py
|
3 |
+
import torch
|
4 |
+
from transformers import LogitsProcessor
|
5 |
+
|
6 |
+
|
7 |
+
class CTCPrefixScoreTH(object):
|
8 |
+
"""Batch processing of CTCPrefixScore
|
9 |
+
|
10 |
+
which is based on Algorithm 2 in WATANABE et al.
|
11 |
+
"HYBRID CTC/ATTENTION ARCHITECTURE FOR END-TO-END SPEECH RECOGNITION,"
|
12 |
+
but extended to efficiently compute the label probablities for multiple
|
13 |
+
hypotheses simultaneously
|
14 |
+
See also Seki et al. "Vectorized Beam Search for CTC-Attention-Based
|
15 |
+
Speech Recognition," In INTERSPEECH (pp. 3825-3829), 2019.
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(self, x, xlens, blank, eos, margin=0):
|
19 |
+
"""Construct CTC prefix scorer
|
20 |
+
|
21 |
+
:param torch.Tensor x: input label posterior sequences (B, T, O)
|
22 |
+
:param torch.Tensor xlens: input lengths (B,)
|
23 |
+
:param int blank: blank label id
|
24 |
+
:param int eos: end-of-sequence id
|
25 |
+
:param int margin: margin parameter for windowing (0 means no windowing)
|
26 |
+
"""
|
27 |
+
# In the comment lines,
|
28 |
+
# we assume T: input_length, B: batch size, W: beam width, O: output dim.
|
29 |
+
self.logzero = -10000000000.0
|
30 |
+
self.blank = blank
|
31 |
+
self.eos = eos
|
32 |
+
self.batch = x.size(0)
|
33 |
+
self.input_length = x.size(1)
|
34 |
+
self.odim = x.size(2)
|
35 |
+
self.dtype = x.dtype
|
36 |
+
self.device = torch.device("cuda:%d" % x.get_device()) if x.is_cuda else torch.device("cpu")
|
37 |
+
# Pad the rest of posteriors in the batch
|
38 |
+
# TODO(takaaki-hori): need a better way without for-loops
|
39 |
+
for i, l in enumerate(xlens):
|
40 |
+
if l < self.input_length:
|
41 |
+
x[i, l:, :] = self.logzero
|
42 |
+
x[i, l:, blank] = 0
|
43 |
+
# Reshape input x
|
44 |
+
xn = x.transpose(0, 1) # (B, T, O) -> (T, B, O)
|
45 |
+
xb = xn[:, :, self.blank].unsqueeze(2).expand(-1, -1, self.odim)
|
46 |
+
self.x = torch.stack([xn, xb]) # (2, T, B, O)
|
47 |
+
self.end_frames = torch.as_tensor(xlens) - 1
|
48 |
+
|
49 |
+
# Setup CTC windowing
|
50 |
+
self.margin = margin
|
51 |
+
if margin > 0:
|
52 |
+
self.frame_ids = torch.arange(self.input_length, dtype=self.dtype, device=self.device)
|
53 |
+
# Base indices for index conversion
|
54 |
+
self.idx_bh = None
|
55 |
+
self.idx_b = torch.arange(self.batch, device=self.device)
|
56 |
+
self.idx_bo = (self.idx_b * self.odim).unsqueeze(1)
|
57 |
+
|
58 |
+
def __call__(self, y, state, scoring_ids=None, att_w=None):
|
59 |
+
"""Compute CTC prefix scores for next labels
|
60 |
+
|
61 |
+
:param list y: prefix label sequences
|
62 |
+
:param tuple state: previous CTC state
|
63 |
+
:param torch.Tensor att_w: attention weights to decide CTC window
|
64 |
+
:return new_state, ctc_local_scores (BW, O)
|
65 |
+
"""
|
66 |
+
|
67 |
+
# print(self.tokenizer.batch_decode(y))
|
68 |
+
output_length = len(y[0]) - 1 # ignore sos
|
69 |
+
last_ids = [yi[-1] for yi in y] # last output label ids
|
70 |
+
n_bh = len(last_ids) # batch * hyps
|
71 |
+
n_hyps = n_bh // self.batch # assuming each utterance has the same # of hyps
|
72 |
+
self.scoring_num = scoring_ids.size(-1) if scoring_ids is not None else 0
|
73 |
+
# prepare state info
|
74 |
+
if state is None:
|
75 |
+
r_prev = torch.full(
|
76 |
+
(self.input_length, 2, self.batch, n_hyps),
|
77 |
+
self.logzero,
|
78 |
+
dtype=self.dtype,
|
79 |
+
device=self.device,
|
80 |
+
)
|
81 |
+
r_prev[:, 1] = torch.cumsum(self.x[0, :, :, self.blank], 0).unsqueeze(2)
|
82 |
+
r_prev = r_prev.view(-1, 2, n_bh)
|
83 |
+
s_prev = 0.0
|
84 |
+
f_min_prev = 0
|
85 |
+
f_max_prev = 1
|
86 |
+
else:
|
87 |
+
r_prev, s_prev, f_min_prev, f_max_prev = state
|
88 |
+
|
89 |
+
# select input dimensions for decred_scoring
|
90 |
+
if self.scoring_num > 0:
|
91 |
+
scoring_idmap = torch.full((n_bh, self.odim), -1, dtype=torch.long, device=self.device)
|
92 |
+
snum = self.scoring_num
|
93 |
+
if self.idx_bh is None or n_bh > len(self.idx_bh):
|
94 |
+
self.idx_bh = torch.arange(n_bh, device=self.device).view(-1, 1)
|
95 |
+
scoring_idmap[self.idx_bh[:n_bh], scoring_ids] = torch.arange(snum, device=self.device)
|
96 |
+
scoring_idx = (scoring_ids + self.idx_bo.repeat(1, n_hyps).view(-1, 1)).view(-1)
|
97 |
+
x_ = torch.index_select(self.x.view(2, -1, self.batch * self.odim), 2, scoring_idx).view(2, -1, n_bh, snum)
|
98 |
+
else:
|
99 |
+
scoring_ids = None
|
100 |
+
scoring_idmap = None
|
101 |
+
snum = self.odim
|
102 |
+
x_ = self.x.unsqueeze(3).repeat(1, 1, 1, n_hyps, 1).view(2, -1, n_bh, snum)
|
103 |
+
|
104 |
+
# new CTC forward probs are prepared as a (T x 2 x BW x S) tensor
|
105 |
+
# that corresponds to r_t^n(h) and r_t^b(h) in a batch.
|
106 |
+
r = torch.full(
|
107 |
+
(self.input_length, 2, n_bh, snum),
|
108 |
+
self.logzero,
|
109 |
+
dtype=self.dtype,
|
110 |
+
device=self.device,
|
111 |
+
)
|
112 |
+
if output_length == 0:
|
113 |
+
r[0, 0] = x_[0, 0]
|
114 |
+
|
115 |
+
r_sum = torch.logsumexp(r_prev, 1)
|
116 |
+
log_phi = r_sum.unsqueeze(2).repeat(1, 1, snum)
|
117 |
+
if scoring_ids is not None:
|
118 |
+
for idx in range(n_bh):
|
119 |
+
pos = scoring_idmap[idx, last_ids[idx]]
|
120 |
+
if pos >= 0:
|
121 |
+
log_phi[:, idx, pos] = r_prev[:, 1, idx]
|
122 |
+
else:
|
123 |
+
for idx in range(n_bh):
|
124 |
+
log_phi[:, idx, last_ids[idx]] = r_prev[:, 1, idx]
|
125 |
+
|
126 |
+
# decide start and end frames based on attention weights
|
127 |
+
if att_w is not None and self.margin > 0:
|
128 |
+
f_arg = torch.matmul(att_w, self.frame_ids)
|
129 |
+
f_min = max(int(f_arg.min().cpu()), f_min_prev)
|
130 |
+
f_max = max(int(f_arg.max().cpu()), f_max_prev)
|
131 |
+
start = min(f_max_prev, max(f_min - self.margin, output_length, 1))
|
132 |
+
end = min(f_max + self.margin, self.input_length)
|
133 |
+
else:
|
134 |
+
f_min = f_max = 0
|
135 |
+
start = max(output_length, 1)
|
136 |
+
end = self.input_length
|
137 |
+
|
138 |
+
if start > end:
|
139 |
+
return torch.full_like(s_prev, self.logzero), (
|
140 |
+
r,
|
141 |
+
torch.full_like(s_prev, self.logzero),
|
142 |
+
f_min,
|
143 |
+
f_max,
|
144 |
+
scoring_idmap,
|
145 |
+
)
|
146 |
+
|
147 |
+
# compute forward probabilities log(r_t^n(h)) and log(r_t^b(h))
|
148 |
+
for t in range(start, end):
|
149 |
+
rp = r[t - 1]
|
150 |
+
rr = torch.stack([rp[0], log_phi[t - 1], rp[0], rp[1]]).view(2, 2, n_bh, snum)
|
151 |
+
r[t] = torch.logsumexp(rr, 1) + x_[:, t]
|
152 |
+
|
153 |
+
# compute log prefix probabilities log(psi)
|
154 |
+
log_phi_x = torch.cat((log_phi[0].unsqueeze(0), log_phi[:-1]), dim=0) + x_[0]
|
155 |
+
if scoring_ids is not None:
|
156 |
+
log_psi = torch.full((n_bh, self.odim), self.logzero, dtype=self.dtype, device=self.device)
|
157 |
+
log_psi_ = torch.logsumexp(
|
158 |
+
torch.cat((log_phi_x[start:end], r[start - 1, 0].unsqueeze(0)), dim=0),
|
159 |
+
dim=0,
|
160 |
+
)
|
161 |
+
for si in range(n_bh):
|
162 |
+
log_psi[si, scoring_ids[si]] = log_psi_[si]
|
163 |
+
else:
|
164 |
+
log_psi = torch.logsumexp(
|
165 |
+
torch.cat((log_phi_x[start:end], r[start - 1, 0].unsqueeze(0)), dim=0),
|
166 |
+
dim=0,
|
167 |
+
)
|
168 |
+
|
169 |
+
# for si in range(n_bh):
|
170 |
+
# log_psi[si, self.eos] = r_sum[self.end_frames[si // n_hyps], si]
|
171 |
+
|
172 |
+
# exclude blank probs
|
173 |
+
log_psi[:, self.blank] = self.logzero
|
174 |
+
|
175 |
+
token_scores = log_psi - s_prev
|
176 |
+
token_scores[token_scores == 0] = self.logzero
|
177 |
+
|
178 |
+
return token_scores, (r, log_psi, f_min, f_max, scoring_idmap)
|
179 |
+
|
180 |
+
def index_select_state(self, state, best_ids):
|
181 |
+
"""Select CTC states according to best ids
|
182 |
+
|
183 |
+
:param state : CTC state
|
184 |
+
:param best_ids : index numbers selected by beam pruning (B, W)
|
185 |
+
:return selected_state
|
186 |
+
"""
|
187 |
+
r, s, f_min, f_max, scoring_idmap = state
|
188 |
+
# convert ids to BHO space
|
189 |
+
n_bh = len(s)
|
190 |
+
n_hyps = n_bh // self.batch
|
191 |
+
vidx = (best_ids + (self.idx_b * (n_hyps * self.odim)).view(-1, 1)).view(-1)
|
192 |
+
# select hypothesis scores
|
193 |
+
s_new = torch.index_select(s.view(-1), 0, vidx)
|
194 |
+
s_new = s_new.view(-1, 1).repeat(1, self.odim).view(n_bh, self.odim)
|
195 |
+
# convert ids to BHS space (S: scoring_num)
|
196 |
+
if scoring_idmap is not None:
|
197 |
+
snum = self.scoring_num
|
198 |
+
hyp_idx = (best_ids // self.odim + (self.idx_b * n_hyps).view(-1, 1)).view(-1)
|
199 |
+
label_ids = torch.fmod(best_ids, self.odim).view(-1)
|
200 |
+
score_idx = scoring_idmap[hyp_idx, label_ids]
|
201 |
+
score_idx[score_idx == -1] = 0
|
202 |
+
vidx = score_idx + hyp_idx * snum
|
203 |
+
else:
|
204 |
+
snum = self.odim
|
205 |
+
# select forward probabilities
|
206 |
+
r_new = torch.index_select(r.view(-1, 2, n_bh * snum), 2, vidx).view(-1, 2, n_bh)
|
207 |
+
return r_new, s_new, f_min, f_max
|
208 |
+
|
209 |
+
def extend_prob(self, x):
|
210 |
+
"""Extend CTC prob.
|
211 |
+
|
212 |
+
:param torch.Tensor x: input label posterior sequences (B, T, O)
|
213 |
+
"""
|
214 |
+
|
215 |
+
if self.x.shape[1] < x.shape[1]: # self.x (2,T,B,O); x (B,T,O)
|
216 |
+
# Pad the rest of posteriors in the batch
|
217 |
+
# TODO(takaaki-hori): need a better way without for-loops
|
218 |
+
xlens = [x.size(1)]
|
219 |
+
for i, l in enumerate(xlens):
|
220 |
+
if l < self.input_length:
|
221 |
+
x[i, l:, :] = self.logzero
|
222 |
+
x[i, l:, self.blank] = 0
|
223 |
+
tmp_x = self.x
|
224 |
+
xn = x.transpose(0, 1) # (B, T, O) -> (T, B, O)
|
225 |
+
xb = xn[:, :, self.blank].unsqueeze(2).expand(-1, -1, self.odim)
|
226 |
+
self.x = torch.stack([xn, xb]) # (2, T, B, O)
|
227 |
+
self.x[:, : tmp_x.shape[1], :, :] = tmp_x
|
228 |
+
self.input_length = x.size(1)
|
229 |
+
self.end_frames = torch.as_tensor(xlens) - 1
|
230 |
+
|
231 |
+
def extend_state(self, state):
|
232 |
+
"""Compute CTC prefix state.
|
233 |
+
|
234 |
+
|
235 |
+
:param state : CTC state
|
236 |
+
:return ctc_state
|
237 |
+
"""
|
238 |
+
|
239 |
+
if state is None:
|
240 |
+
# nothing to do
|
241 |
+
return state
|
242 |
+
else:
|
243 |
+
r_prev, s_prev, f_min_prev, f_max_prev = state
|
244 |
+
|
245 |
+
r_prev_new = torch.full(
|
246 |
+
(self.input_length, 2),
|
247 |
+
self.logzero,
|
248 |
+
dtype=self.dtype,
|
249 |
+
device=self.device,
|
250 |
+
)
|
251 |
+
start = max(r_prev.shape[0], 1)
|
252 |
+
r_prev_new[0:start] = r_prev
|
253 |
+
for t in range(start, self.input_length):
|
254 |
+
r_prev_new[t, 1] = r_prev_new[t - 1, 1] + self.x[0, t, :, self.blank]
|
255 |
+
|
256 |
+
return (r_prev_new, s_prev, f_min_prev, f_max_prev)
|
257 |
+
|
258 |
+
|
259 |
+
class CTCRescorerLogitsProcessor(LogitsProcessor):
|
260 |
+
def __init__(
|
261 |
+
self,
|
262 |
+
encoder_logits: torch.FloatTensor,
|
263 |
+
encoder_output_lens: torch.LongTensor,
|
264 |
+
pad_token_id: int,
|
265 |
+
eos_token_id: int,
|
266 |
+
ctc_margin: int,
|
267 |
+
ctc_weight: float,
|
268 |
+
num_beams: int,
|
269 |
+
space_token_id: int,
|
270 |
+
apply_eos_space_trick: bool,
|
271 |
+
eos_space_trick_weight: float,
|
272 |
+
debug: bool = False,
|
273 |
+
):
|
274 |
+
super().__init__()
|
275 |
+
# reduce_lens_by = (encoder_logits.argmax(dim=-1) == eos_token_id).sum(dim=-1)
|
276 |
+
# encoder_output_lens = encoder_output_lens - reduce_lens_by
|
277 |
+
self.pad_token_id = pad_token_id
|
278 |
+
self.ctc_prefix_scorer = CTCPrefixScoreTH(
|
279 |
+
torch.nn.functional.log_softmax(encoder_logits, dim=-1),
|
280 |
+
encoder_output_lens,
|
281 |
+
pad_token_id,
|
282 |
+
eos_token_id,
|
283 |
+
ctc_margin,
|
284 |
+
)
|
285 |
+
self.ctc_weight = ctc_weight
|
286 |
+
self.ctc_states = None
|
287 |
+
self.num_beams = num_beams
|
288 |
+
self.eos_token_id = eos_token_id
|
289 |
+
self.apply_eos_space_trick = apply_eos_space_trick
|
290 |
+
self.space_token_id = space_token_id
|
291 |
+
self.eos_space_trick_weight = eos_space_trick_weight
|
292 |
+
self.debug = debug
|
293 |
+
|
294 |
+
@staticmethod
|
295 |
+
def analyze_predictions(
|
296 |
+
scores, ctc_scores, next_token_scores, input_ids, k=10, tokenizer="Lakoc/english_corpus_uni5000_normalized"
|
297 |
+
):
|
298 |
+
from transformers import AutoTokenizer
|
299 |
+
|
300 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer)
|
301 |
+
best_att_ids = scores.topk(k=k, dim=1)
|
302 |
+
best_ctc_ids = ctc_scores.topk(k=k, dim=1)
|
303 |
+
best_ids = next_token_scores.topk(k=k, dim=1)
|
304 |
+
|
305 |
+
def print_prediction(best_ids, name):
|
306 |
+
new_tensor = torch.zeros((best_ids.indices.shape[0], best_ids.indices.shape[1] * 2), dtype=torch.long)
|
307 |
+
new_tensor[:, 0::2] = best_ids.indices
|
308 |
+
new_tensor[:, 1::2] = 4976
|
309 |
+
print(f"{name}:")
|
310 |
+
for index, (next_ids, scores) in enumerate(zip(tokenizer.batch_decode(new_tensor), best_ids.values)):
|
311 |
+
print(f"HYP {index}:\n{next_ids} {scores}")
|
312 |
+
|
313 |
+
print(f"PREFIX:")
|
314 |
+
for index, prefix in enumerate(tokenizer.batch_decode(input_ids)):
|
315 |
+
print(f"HYP {index}:\n{prefix}")
|
316 |
+
print_prediction(best_att_ids, "ATT_SCORES")
|
317 |
+
print()
|
318 |
+
print_prediction(best_ctc_ids, "CTC_SCORES")
|
319 |
+
print()
|
320 |
+
print(f"CTC_EOS: {ctc_scores[:, 1]}")
|
321 |
+
print_prediction(best_ids, "NEXT_TOKEN_SCORES")
|
322 |
+
print()
|
323 |
+
|
324 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
325 |
+
scores[:, self.pad_token_id] = self.ctc_prefix_scorer.logzero
|
326 |
+
if self.ctc_states is not None:
|
327 |
+
self.ctc_states = self.ctc_prefix_scorer.index_select_state(
|
328 |
+
self.ctc_states, input_ids[:, -1].reshape(-1, self.num_beams)
|
329 |
+
)
|
330 |
+
ctc_scores, ctc_states = self.ctc_prefix_scorer(input_ids, self.ctc_states)
|
331 |
+
self.ctc_states = ctc_states
|
332 |
+
next_token_scores = (1 - self.ctc_weight) * scores + self.ctc_weight * ctc_scores
|
333 |
+
if self.apply_eos_space_trick:
|
334 |
+
space_eos_conflict = torch.logical_and(
|
335 |
+
scores.argmax(dim=1) == self.eos_token_id, ctc_scores.argmax(dim=1) == self.space_token_id
|
336 |
+
)
|
337 |
+
if space_eos_conflict.any():
|
338 |
+
apply_trick_on = torch.logical_and(
|
339 |
+
torch.logical_and(
|
340 |
+
space_eos_conflict,
|
341 |
+
next_token_scores[:, self.eos_token_id] < next_token_scores[:, self.space_token_id],
|
342 |
+
),
|
343 |
+
self.eos_space_trick_weight * next_token_scores[:, self.eos_token_id]
|
344 |
+
> next_token_scores[:, self.space_token_id],
|
345 |
+
)
|
346 |
+
if apply_trick_on.any():
|
347 |
+
next_token_scores[apply_trick_on, self.eos_token_id] = (
|
348 |
+
next_token_scores[apply_trick_on, self.eos_token_id] * self.eos_space_trick_weight
|
349 |
+
)
|
350 |
+
|
351 |
+
if self.debug:
|
352 |
+
self.analyze_predictions(scores, ctc_scores, next_token_scores, input_ids)
|
353 |
+
|
354 |
+
return next_token_scores
|
355 |
+
|
356 |
+
|
357 |
+
class LogSoftmaxProcessor(LogitsProcessor):
|
358 |
+
def __init__(
|
359 |
+
self,
|
360 |
+
):
|
361 |
+
super().__init__()
|
362 |
+
|
363 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
364 |
+
scores = torch.nn.functional.log_softmax(scores, dim=-1)
|
365 |
+
return scores
|
e_branchformer.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" PyTorch Wav2Vec2-Ebranchformer model."""
|
2 |
+
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.utils.checkpoint
|
7 |
+
from torch import nn
|
8 |
+
from transformers.activations import ACT2FN
|
9 |
+
from transformers.models.wav2vec2.modeling_wav2vec2 import (
|
10 |
+
Wav2Vec2Config,
|
11 |
+
Wav2Vec2ForCTC,
|
12 |
+
Wav2Vec2ForPreTraining,
|
13 |
+
)
|
14 |
+
from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer import (
|
15 |
+
Wav2Vec2ConformerConfig,
|
16 |
+
Wav2Vec2ConformerEncoder,
|
17 |
+
)
|
18 |
+
from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer import (
|
19 |
+
Wav2Vec2ConformerFeedForward as Wav2Vec2EBranchformerFeedForward,
|
20 |
+
)
|
21 |
+
from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer import (
|
22 |
+
Wav2Vec2ConformerModel,
|
23 |
+
)
|
24 |
+
from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer import (
|
25 |
+
Wav2Vec2ConformerSelfAttention as Wav2Vec2EBranchformerSelfAttention,
|
26 |
+
)
|
27 |
+
from transformers.utils import logging
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
|
32 |
+
class Wav2Vec2EBranchformerConfig(Wav2Vec2ConformerConfig, Wav2Vec2Config):
|
33 |
+
"""Config for EBranhformer model extending conformer."""
|
34 |
+
|
35 |
+
model_type = "wav2vec2-ebranchformer"
|
36 |
+
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
ebranchformer_conv_dropout=0.1,
|
40 |
+
csgu_activation="identity",
|
41 |
+
csgu_kernel_size=31,
|
42 |
+
csgu_use_linear_after_conv=False,
|
43 |
+
merge_conv_kernel=31,
|
44 |
+
use_macaron_ff=True,
|
45 |
+
**kwargs,
|
46 |
+
):
|
47 |
+
super().__init__(**kwargs)
|
48 |
+
# EBranchformer related params
|
49 |
+
self.csgu_kernel_size = csgu_kernel_size
|
50 |
+
self.csgu_activation = csgu_activation
|
51 |
+
self.csgu_conv_dropout = ebranchformer_conv_dropout
|
52 |
+
self.csgu_use_linear_after_conv = csgu_use_linear_after_conv
|
53 |
+
self.merge_conv_kernel = merge_conv_kernel
|
54 |
+
self.use_macaron_ff = use_macaron_ff
|
55 |
+
|
56 |
+
|
57 |
+
class ConvolutionalSpatialGatingUnit(torch.nn.Module):
|
58 |
+
"""Convolutional Spatial Gating Unit (CSGU)."""
|
59 |
+
|
60 |
+
def __init__(self, config: Wav2Vec2EBranchformerConfig):
|
61 |
+
super().__init__()
|
62 |
+
|
63 |
+
n_channels = config.intermediate_size // 2 # split input channels
|
64 |
+
self.norm = torch.nn.LayerNorm(n_channels)
|
65 |
+
self.conv = torch.nn.Conv1d(
|
66 |
+
n_channels,
|
67 |
+
n_channels,
|
68 |
+
config.csgu_kernel_size,
|
69 |
+
1,
|
70 |
+
(config.csgu_kernel_size - 1) // 2,
|
71 |
+
groups=n_channels,
|
72 |
+
)
|
73 |
+
if config.csgu_use_linear_after_conv:
|
74 |
+
self.linear = torch.nn.Linear(n_channels, n_channels)
|
75 |
+
else:
|
76 |
+
self.linear = None
|
77 |
+
|
78 |
+
if config.csgu_activation == "identity":
|
79 |
+
self.act = torch.nn.Identity()
|
80 |
+
else:
|
81 |
+
self.act = ACT2FN[config.csgu_activation]
|
82 |
+
|
83 |
+
self.dropout = torch.nn.Dropout(config.csgu_conv_dropout)
|
84 |
+
|
85 |
+
def forward(self, hidden_states: torch.FloatTensor):
|
86 |
+
"""Forward method
|
87 |
+
|
88 |
+
Args:
|
89 |
+
hidden_states (torch.Tensor): (N, T, D)
|
90 |
+
|
91 |
+
Returns:
|
92 |
+
out (torch.Tensor): (N, T, D/2)
|
93 |
+
"""
|
94 |
+
|
95 |
+
x_r, x_g = hidden_states.chunk(2, dim=-1)
|
96 |
+
|
97 |
+
x_g = self.norm(x_g) # (N, T, D/2)
|
98 |
+
x_g = self.conv(x_g.transpose(1, 2)).transpose(1, 2) # (N, T, D/2)
|
99 |
+
if self.linear is not None:
|
100 |
+
x_g = self.linear(x_g)
|
101 |
+
|
102 |
+
x_g = self.act(x_g)
|
103 |
+
hidden_states = x_r * x_g # (N, T, D/2)
|
104 |
+
hidden_states = self.dropout(hidden_states)
|
105 |
+
return hidden_states
|
106 |
+
|
107 |
+
|
108 |
+
class ConvolutionalGatingMLP(torch.nn.Module):
|
109 |
+
"""Convolutional Gating MLP (cgMLP)."""
|
110 |
+
|
111 |
+
def __init__(self, config: Wav2Vec2EBranchformerConfig):
|
112 |
+
super().__init__()
|
113 |
+
self.channel_proj1 = torch.nn.Sequential(
|
114 |
+
torch.nn.Linear(config.hidden_size, config.intermediate_size), torch.nn.GELU()
|
115 |
+
)
|
116 |
+
self.csgu = ConvolutionalSpatialGatingUnit(config)
|
117 |
+
self.channel_proj2 = torch.nn.Linear(config.intermediate_size // 2, config.hidden_size)
|
118 |
+
|
119 |
+
def forward(self, hidden_states: torch.FloatTensor):
|
120 |
+
hidden_states = self.channel_proj1(hidden_states) # hidden_size -> intermediate_size
|
121 |
+
hidden_states = self.csgu(hidden_states) # intermediate_size -> intermediate_size/2
|
122 |
+
hidden_states = self.channel_proj2(hidden_states) # intermediate_size/2 -> hidden_size
|
123 |
+
return hidden_states
|
124 |
+
|
125 |
+
|
126 |
+
class Wav2Vec2EBranchformerEncoderLayer(nn.Module):
|
127 |
+
def __init__(self, config: Wav2Vec2EBranchformerConfig):
|
128 |
+
super().__init__()
|
129 |
+
embed_dim = config.hidden_size
|
130 |
+
dropout = config.attention_dropout
|
131 |
+
|
132 |
+
# Feed-forward 1
|
133 |
+
if config.use_macaron_ff:
|
134 |
+
self.ff1 = nn.Sequential(nn.LayerNorm(embed_dim), Wav2Vec2EBranchformerFeedForward(config))
|
135 |
+
|
136 |
+
# Self-Attention
|
137 |
+
self.self_attn_layer_norm = nn.LayerNorm(embed_dim)
|
138 |
+
self.self_attn_dropout = torch.nn.Dropout(dropout)
|
139 |
+
self.self_attn = Wav2Vec2EBranchformerSelfAttention(config)
|
140 |
+
|
141 |
+
# cgMLP
|
142 |
+
self.cgMLP = ConvolutionalGatingMLP(config)
|
143 |
+
self.cgMLP_layer_norm = nn.LayerNorm(config.hidden_size)
|
144 |
+
self.cgMLP_dropout = torch.nn.Dropout(dropout)
|
145 |
+
|
146 |
+
# Merge
|
147 |
+
self.final_dropout = torch.nn.Dropout(dropout)
|
148 |
+
self.merge_proj = torch.nn.Linear(embed_dim + embed_dim, embed_dim)
|
149 |
+
self.depthwise_conv_fusion = torch.nn.Conv1d(
|
150 |
+
embed_dim + embed_dim,
|
151 |
+
embed_dim + embed_dim,
|
152 |
+
kernel_size=config.merge_conv_kernel,
|
153 |
+
stride=1,
|
154 |
+
padding=(config.merge_conv_kernel - 1) // 2,
|
155 |
+
groups=embed_dim + embed_dim,
|
156 |
+
bias=True,
|
157 |
+
)
|
158 |
+
self.final_layer_norm = nn.LayerNorm(embed_dim)
|
159 |
+
|
160 |
+
# Feed-forward 2
|
161 |
+
if config.use_macaron_ff:
|
162 |
+
self.ff2 = nn.Sequential(nn.LayerNorm(embed_dim), Wav2Vec2EBranchformerFeedForward(config))
|
163 |
+
|
164 |
+
def forward(
|
165 |
+
self,
|
166 |
+
hidden_states: torch.FloatTensor,
|
167 |
+
attention_mask: Optional[torch.Tensor] = None,
|
168 |
+
relative_position_embeddings: Optional[torch.Tensor] = None,
|
169 |
+
output_attentions: bool = False,
|
170 |
+
):
|
171 |
+
# 1. Optional ff1
|
172 |
+
if self.ff1:
|
173 |
+
residual = hidden_states
|
174 |
+
hidden_states = residual + 0.5 * self.ff1(hidden_states)
|
175 |
+
|
176 |
+
# 2. Split input to three branches
|
177 |
+
residual = hidden_states
|
178 |
+
global_branch = hidden_states
|
179 |
+
local_branch = hidden_states
|
180 |
+
|
181 |
+
# 3. Self-Attention branch
|
182 |
+
global_branch = self.self_attn_layer_norm(global_branch)
|
183 |
+
global_branch, attn_weigts = self.self_attn(
|
184 |
+
hidden_states=global_branch,
|
185 |
+
attention_mask=attention_mask,
|
186 |
+
relative_position_embeddings=relative_position_embeddings,
|
187 |
+
output_attentions=output_attentions,
|
188 |
+
)
|
189 |
+
global_branch = self.self_attn_dropout(global_branch)
|
190 |
+
|
191 |
+
# 4. cgMLP Branch
|
192 |
+
local_branch = self.cgMLP_layer_norm(local_branch)
|
193 |
+
local_branch = self.cgMLP(local_branch)
|
194 |
+
|
195 |
+
# 5. Merge operator
|
196 |
+
# a, concat
|
197 |
+
hidden_states = torch.cat([global_branch, local_branch], dim=-1)
|
198 |
+
merge_residual = hidden_states
|
199 |
+
# b, depth-wise conv mixing
|
200 |
+
hidden_states = merge_residual + self.depthwise_conv_fusion(hidden_states.transpose(1, 2)).transpose(1, 2)
|
201 |
+
# c, project back to original size and final dropout
|
202 |
+
hidden_states = self.final_dropout(self.merge_proj(hidden_states))
|
203 |
+
|
204 |
+
# 6. Add residual
|
205 |
+
hidden_states = residual + hidden_states
|
206 |
+
|
207 |
+
# 7. Optional ff2
|
208 |
+
if self.ff2:
|
209 |
+
residual = hidden_states
|
210 |
+
hidden_states = residual + 0.5 * self.ff2(hidden_states)
|
211 |
+
|
212 |
+
# 8. Final layer norm
|
213 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
214 |
+
return hidden_states, attn_weigts
|
215 |
+
|
216 |
+
|
217 |
+
class Wav2Vec2EBranchformerEncoder(Wav2Vec2ConformerEncoder):
|
218 |
+
def __init__(self, config: Wav2Vec2EBranchformerConfig):
|
219 |
+
super().__init__(config)
|
220 |
+
self.layers = nn.ModuleList(
|
221 |
+
[Wav2Vec2EBranchformerEncoderLayer(config) for _ in range(config.num_hidden_layers)]
|
222 |
+
)
|
223 |
+
self.pos_conv_embed = None
|
224 |
+
|
225 |
+
|
226 |
+
class Wav2Vec2EBranchformerModel(Wav2Vec2ConformerModel):
|
227 |
+
def __init__(self, config: Wav2Vec2EBranchformerConfig):
|
228 |
+
super().__init__(config)
|
229 |
+
self.encoder = Wav2Vec2EBranchformerEncoder(config)
|
230 |
+
|
231 |
+
# Initialize weights and apply final processing
|
232 |
+
self.post_init()
|
233 |
+
|
234 |
+
|
235 |
+
class Wav2Vec2EBranchformerForPreTraining(Wav2Vec2ForPreTraining):
|
236 |
+
config_class = Wav2Vec2EBranchformerConfig
|
237 |
+
base_model_prefix = "wav2vec2"
|
238 |
+
|
239 |
+
def __init__(self, config: Wav2Vec2EBranchformerConfig):
|
240 |
+
super().__init__(config)
|
241 |
+
self.wav2vec2 = Wav2Vec2EBranchformerModel(config)
|
242 |
+
self.post_init()
|
243 |
+
|
244 |
+
|
245 |
+
class Wav2Vec2EBranchformerForCTC(Wav2Vec2ForCTC):
|
246 |
+
config_class = Wav2Vec2EBranchformerConfig
|
247 |
+
base_model_prefix = "wav2vec2"
|
248 |
+
|
249 |
+
def __init__(self, config: Wav2Vec2EBranchformerConfig):
|
250 |
+
super().__init__(config)
|
251 |
+
self.wav2vec2 = Wav2Vec2EBranchformerModel(config)
|
252 |
+
self.post_init()
|
embeddings.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class AdaptiveEmbedding(nn.Module):
|
6 |
+
def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, sample_softmax=False):
|
7 |
+
super().__init__()
|
8 |
+
|
9 |
+
self.n_token = n_token
|
10 |
+
self.d_embed = d_embed
|
11 |
+
|
12 |
+
self.cutoffs = cutoffs + [n_token]
|
13 |
+
self.div_val = div_val
|
14 |
+
self.d_proj = d_proj
|
15 |
+
|
16 |
+
self.emb_scale = d_proj**0.5
|
17 |
+
|
18 |
+
self.cutoff_ends = [0] + self.cutoffs
|
19 |
+
|
20 |
+
self.emb_layers = nn.ModuleList()
|
21 |
+
self.emb_projs = nn.ParameterList()
|
22 |
+
if div_val == 1:
|
23 |
+
self.emb_layers.append(nn.Embedding(n_token, d_embed, sparse=sample_softmax > 0))
|
24 |
+
if d_proj != d_embed:
|
25 |
+
self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed)))
|
26 |
+
else:
|
27 |
+
for i in range(len(self.cutoffs)):
|
28 |
+
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
|
29 |
+
d_emb_i = d_embed // (div_val**i)
|
30 |
+
self.emb_layers.append(nn.Embedding(r_idx - l_idx, d_emb_i))
|
31 |
+
self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_emb_i)))
|
32 |
+
|
33 |
+
def forward(self, inp):
|
34 |
+
if self.div_val == 1:
|
35 |
+
embed = self.emb_layers[0](inp)
|
36 |
+
if self.d_proj != self.d_embed:
|
37 |
+
embed = nn.functional.linear(embed, self.emb_projs[0])
|
38 |
+
else:
|
39 |
+
param = next(self.parameters())
|
40 |
+
inp_flat = inp.view(-1)
|
41 |
+
emb_flat = torch.zeros([inp_flat.size(0), self.d_proj], dtype=param.dtype, device=param.device)
|
42 |
+
for i in range(len(self.cutoffs)):
|
43 |
+
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
|
44 |
+
|
45 |
+
mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx)
|
46 |
+
indices_i = mask_i.nonzero().squeeze()
|
47 |
+
|
48 |
+
if indices_i.numel() == 0:
|
49 |
+
continue
|
50 |
+
|
51 |
+
inp_i = inp_flat.index_select(0, indices_i) - l_idx
|
52 |
+
emb_i = self.emb_layers[i](inp_i)
|
53 |
+
emb_i = nn.functional.linear(emb_i, self.emb_projs[i])
|
54 |
+
|
55 |
+
emb_flat.index_copy_(0, indices_i, emb_i)
|
56 |
+
|
57 |
+
embed_shape = inp.size() + (self.d_proj,)
|
58 |
+
embed = emb_flat.view(embed_shape)
|
59 |
+
|
60 |
+
embed.mul_(self.emb_scale)
|
61 |
+
|
62 |
+
return embed
|
63 |
+
|
64 |
+
|
65 |
+
class PositionalEmbeddingAux(nn.Module):
|
66 |
+
def __init__(self, demb):
|
67 |
+
super().__init__()
|
68 |
+
|
69 |
+
self.demb = demb
|
70 |
+
|
71 |
+
inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb))
|
72 |
+
self.register_buffer("inv_freq", inv_freq)
|
73 |
+
|
74 |
+
def forward(self, pos_seq, bsz=None):
|
75 |
+
sinusoid_inp = torch.outer(pos_seq, self.inv_freq)
|
76 |
+
pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)
|
77 |
+
|
78 |
+
if bsz is not None:
|
79 |
+
return pos_emb[:, None, :].expand(-1, bsz, -1)
|
80 |
+
else:
|
81 |
+
return pos_emb[:, None, :]
|
82 |
+
|
83 |
+
|
84 |
+
class PositionalEmbedding(PositionalEmbeddingAux):
|
85 |
+
def forward(self, pos_seq, bsz=None):
|
86 |
+
return super().forward(pos_seq.squeeze(0), bsz=bsz).squeeze(1)
|
extractors.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from transformers.activations import ACT2FN
|
4 |
+
|
5 |
+
|
6 |
+
class Conv2dFeatureExtractor(nn.Module):
|
7 |
+
def __init__(self, config):
|
8 |
+
super().__init__()
|
9 |
+
self.conv = torch.nn.Sequential(
|
10 |
+
*[
|
11 |
+
nn.Sequential(
|
12 |
+
nn.Conv2d(
|
13 |
+
conv_in,
|
14 |
+
out_channels=conv_out,
|
15 |
+
kernel_size=(conv_kernel, conv_kernel),
|
16 |
+
stride=(conv_stride, conv_stride),
|
17 |
+
),
|
18 |
+
ACT2FN[config.feat_extract_activation],
|
19 |
+
)
|
20 |
+
for conv_in, conv_out, conv_kernel, conv_stride in zip(
|
21 |
+
[1, *config.conv_dim], config.conv_dim, config.conv_kernel, config.conv_stride
|
22 |
+
)
|
23 |
+
],
|
24 |
+
)
|
25 |
+
|
26 |
+
linear_in_dim = config.conv_dim[-1] * (((config.second_dim_input_size - 1) // 2 - 1) // 2)
|
27 |
+
self.out = torch.nn.Linear(linear_in_dim, config.hidden_size, bias=True)
|
28 |
+
|
29 |
+
def forward(self, input_values: torch.Tensor) -> torch.Tensor:
|
30 |
+
hidden_states = self.conv(input_values[:, None, ...])
|
31 |
+
hidden_states = self.out(hidden_states.transpose(1, 2).flatten(2, 3))
|
32 |
+
return hidden_states.transpose(1, 2)
|
generation.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GenerationConfig
|
2 |
+
|
3 |
+
|
4 |
+
class GenerationConfigCustom(GenerationConfig):
|
5 |
+
def __init__(
|
6 |
+
self,
|
7 |
+
ctc_weight=0.0,
|
8 |
+
ctc_margin=0,
|
9 |
+
lm_weight=0,
|
10 |
+
lm_model=None,
|
11 |
+
space_token_id=-1,
|
12 |
+
eos_space_trick_weight=0,
|
13 |
+
apply_eos_space_trick=False,
|
14 |
+
**kwargs,
|
15 |
+
):
|
16 |
+
super().__init__(**kwargs)
|
17 |
+
self.ctc_weight = ctc_weight
|
18 |
+
self.ctc_margin = ctc_margin
|
19 |
+
self.lm_weight = lm_weight
|
20 |
+
self.lm_model = lm_model
|
21 |
+
self.space_token_id = space_token_id
|
22 |
+
self.eos_space_trick_weight = eos_space_trick_weight
|
23 |
+
self.apply_eos_space_trick = apply_eos_space_trick
|
24 |
+
|
25 |
+
def update_from_string(self, update_str: str):
|
26 |
+
"""
|
27 |
+
Updates attributes of this class with attributes from `update_str`.
|
28 |
+
|
29 |
+
The expected format is ints, floats and strings as is, and for booleans use `true` or `false`. For example:
|
30 |
+
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
|
31 |
+
|
32 |
+
The keys to change have to already exist in the config object.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
update_str (`str`): String with attributes that should be updated for this class.
|
36 |
+
|
37 |
+
"""
|
38 |
+
|
39 |
+
d = dict(x.split("=") for x in update_str.split(";"))
|
40 |
+
for k, v in d.items():
|
41 |
+
if not hasattr(self, k):
|
42 |
+
raise ValueError(f"key {k} isn't in the original config dict")
|
43 |
+
|
44 |
+
old_v = getattr(self, k)
|
45 |
+
if isinstance(old_v, bool):
|
46 |
+
if v.lower() in ["true", "1", "y", "yes"]:
|
47 |
+
v = True
|
48 |
+
elif v.lower() in ["false", "0", "n", "no"]:
|
49 |
+
v = False
|
50 |
+
else:
|
51 |
+
raise ValueError(f"can't derive true or false from {v} (key {k})")
|
52 |
+
elif isinstance(old_v, int):
|
53 |
+
v = int(v)
|
54 |
+
elif isinstance(old_v, float):
|
55 |
+
v = float(v)
|
56 |
+
elif not isinstance(old_v, str):
|
57 |
+
raise ValueError(
|
58 |
+
f"You can only update int, float, bool or string values in the config, got {v} for key {k}"
|
59 |
+
)
|
60 |
+
|
61 |
+
setattr(self, k, v)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99db1672cd87dd0fda44c762ded72f22bc2c1bdbce07f9f4478ee35a6c82d45c
|
3 |
+
size 159333232
|
modeling_decred.py
ADDED
@@ -0,0 +1,563 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import CrossEntropyLoss
|
7 |
+
from transformers import (
|
8 |
+
AutoConfig,
|
9 |
+
AutoModelForCausalLM,
|
10 |
+
AutoModelForSpeechSeq2Seq,
|
11 |
+
LogitsProcessor,
|
12 |
+
PretrainedConfig,
|
13 |
+
PreTrainedModel,
|
14 |
+
SpeechEncoderDecoderConfig,
|
15 |
+
SpeechEncoderDecoderModel,
|
16 |
+
StoppingCriteriaList,
|
17 |
+
)
|
18 |
+
from transformers.generation.logits_process import LogitsProcessorList
|
19 |
+
from transformers.generation.utils import GenerateOutput
|
20 |
+
from transformers.modeling_outputs import CausalLMOutput, Seq2SeqLMOutput
|
21 |
+
from transformers.models.speech_encoder_decoder.modeling_speech_encoder_decoder import (
|
22 |
+
shift_tokens_right,
|
23 |
+
)
|
24 |
+
from transformers.utils import logging
|
25 |
+
|
26 |
+
from .auto_wrappers import CustomAutoModelForCTC
|
27 |
+
from .configuration_decred import JointCTCAttentionEncoderDecoderConfig
|
28 |
+
from .ctc_scorer import CTCRescorerLogitsProcessor, LogSoftmaxProcessor
|
29 |
+
from .embeddings import AdaptiveEmbedding, PositionalEmbedding
|
30 |
+
from .generation import GenerationConfigCustom
|
31 |
+
from .multi_head_gpt2 import GPT2LMMultiHeadModel
|
32 |
+
|
33 |
+
logger = logging.get_logger("transformers")
|
34 |
+
|
35 |
+
|
36 |
+
class LMRescorerLogitsProcessor(LogitsProcessor):
|
37 |
+
"""Logits Processor to rescore the next token scores with a language model."""
|
38 |
+
|
39 |
+
def __init__(self, lm_weight: float, lm_model: PreTrainedModel, device: torch.device):
|
40 |
+
super().__init__()
|
41 |
+
self.lm_model = lm_model.to(device)
|
42 |
+
self.lm_weight = lm_weight
|
43 |
+
# self.past_key_values = None
|
44 |
+
|
45 |
+
@staticmethod
|
46 |
+
def analyze_predictions(scores, lm_scores, next_token_scores, input_ids, k=10, tokenizer="Lakoc/ted_uni500"):
|
47 |
+
from transformers import AutoTokenizer
|
48 |
+
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer)
|
50 |
+
best_att_ids = scores.topk(k=k, dim=1)
|
51 |
+
best_ctc_ids = lm_scores.topk(k=k, dim=1)
|
52 |
+
best_ids = next_token_scores.topk(k=k, dim=1)
|
53 |
+
|
54 |
+
def print_prediction(best_ids, name):
|
55 |
+
new_tensor = torch.zeros((best_ids.indices.shape[0], best_ids.indices.shape[1] * 2), dtype=torch.long)
|
56 |
+
new_tensor[:, 0::2] = best_ids.indices
|
57 |
+
new_tensor[:, 1::2] = 1
|
58 |
+
print(f"{name}:")
|
59 |
+
for index, (next_ids, scores) in enumerate(zip(tokenizer.batch_decode(new_tensor), best_ids.values)):
|
60 |
+
print(f"HYP {index}:\n{next_ids} {scores}")
|
61 |
+
|
62 |
+
print(f"PREFIX:")
|
63 |
+
for index, prefix in enumerate(tokenizer.batch_decode(input_ids)):
|
64 |
+
print(f"HYP {index}:\n{prefix}")
|
65 |
+
print_prediction(best_att_ids, "ACCUSTIC_SCORES")
|
66 |
+
print()
|
67 |
+
print_prediction(best_ctc_ids, "LM_SCORES")
|
68 |
+
print()
|
69 |
+
print_prediction(best_ids, "NEXT_TOKEN_SCORES")
|
70 |
+
print()
|
71 |
+
|
72 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
73 |
+
# TODO: KarelB: Can you implement the past_key_values logic?
|
74 |
+
outputs = self.lm_model(
|
75 |
+
input_ids,
|
76 |
+
# input_ids[:, -1]
|
77 |
+
# past_key_values=self.past_key_values,
|
78 |
+
# use_cache=True
|
79 |
+
)
|
80 |
+
# self.past_key_values = outputs.past_key_values
|
81 |
+
lm_scores = torch.nn.functional.log_softmax(outputs.logits[:, -1, :], dim=-1)
|
82 |
+
next_token_scores = scores + self.lm_weight * lm_scores
|
83 |
+
# self.analyze_predictions(scores, lm_scores, next_token_scores, input_ids)
|
84 |
+
return next_token_scores
|
85 |
+
|
86 |
+
|
87 |
+
def wav2vec2_forward_hidden_return_hook(_: PreTrainedModel, __: Any, kwargs):
|
88 |
+
kwargs["output_hidden_states"] = True
|
89 |
+
|
90 |
+
|
91 |
+
@dataclass
|
92 |
+
class Seq2SeqLMOutputLosses(Seq2SeqLMOutput):
|
93 |
+
enc_loss: Optional[torch.FloatTensor] = None
|
94 |
+
dec_loss: Optional[torch.FloatTensor] = None
|
95 |
+
encoder_logits: Optional[torch.FloatTensor] = None
|
96 |
+
|
97 |
+
|
98 |
+
def wav2vec2_for_ctc_forward_hook(model: CustomAutoModelForCTC, input: Any, output: CausalLMOutput):
|
99 |
+
if "hidden_states" in output:
|
100 |
+
output.last_hidden_state = output.hidden_states[-1]
|
101 |
+
|
102 |
+
|
103 |
+
class JointCTCAttentionEncoderDecoder(SpeechEncoderDecoderModel):
|
104 |
+
"""Custom model for CTC+Attention loss based on the ESPNet architecture"""
|
105 |
+
|
106 |
+
config_class = JointCTCAttentionEncoderDecoderConfig
|
107 |
+
base_model_prefix = "joint_aed_ctc_speech-encoder-decoder"
|
108 |
+
|
109 |
+
def __init__(
|
110 |
+
self,
|
111 |
+
config: Optional[PretrainedConfig] = None,
|
112 |
+
encoder: Optional[PreTrainedModel] = None,
|
113 |
+
decoder: Optional[PreTrainedModel] = None,
|
114 |
+
):
|
115 |
+
if config is None and (encoder is None or decoder is None):
|
116 |
+
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
|
117 |
+
if config is None:
|
118 |
+
config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
|
119 |
+
else:
|
120 |
+
if not isinstance(config, self.config_class):
|
121 |
+
raise ValueError(f"Config: {config} has to be of type {self.config_class}")
|
122 |
+
|
123 |
+
if config.decoder.cross_attention_hidden_size is not None:
|
124 |
+
if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size:
|
125 |
+
raise ValueError(
|
126 |
+
"If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal"
|
127 |
+
f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for"
|
128 |
+
f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for"
|
129 |
+
" `config.encoder.hidden_size`."
|
130 |
+
)
|
131 |
+
|
132 |
+
# initialize with config
|
133 |
+
# make sure input & output embeddings is not tied
|
134 |
+
config.tie_word_embeddings = False
|
135 |
+
super(SpeechEncoderDecoderModel, self).__init__(config)
|
136 |
+
|
137 |
+
if encoder is None:
|
138 |
+
encoder = CustomAutoModelForCTC.from_config(config.encoder)
|
139 |
+
encoder.register_forward_hook(wav2vec2_for_ctc_forward_hook)
|
140 |
+
encoder.register_forward_pre_hook(wav2vec2_forward_hidden_return_hook, with_kwargs=True)
|
141 |
+
if decoder is None:
|
142 |
+
decoder = AutoModelForCausalLM.from_config(config.decoder)
|
143 |
+
|
144 |
+
self.encoder = encoder
|
145 |
+
self.decoder = decoder
|
146 |
+
|
147 |
+
if self.encoder.config.to_dict() != self.config.encoder.to_dict():
|
148 |
+
logger.warning(
|
149 |
+
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
|
150 |
+
f" {self.config.encoder}"
|
151 |
+
)
|
152 |
+
if self.decoder.config.to_dict() != self.config.decoder.to_dict():
|
153 |
+
logger.warning(
|
154 |
+
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
|
155 |
+
f" {self.config.decoder}"
|
156 |
+
)
|
157 |
+
|
158 |
+
# make sure that the individual model's config refers to the shared config
|
159 |
+
# so that the updates to the config will be synced
|
160 |
+
self.encoder.config = self.config.encoder
|
161 |
+
self.decoder.config = self.config.decoder
|
162 |
+
|
163 |
+
# get encoder output hidden size
|
164 |
+
self.encoder_output_dim = getattr(config.encoder, "output_hidden_size", config.encoder.hidden_size)
|
165 |
+
if (
|
166 |
+
self.encoder_output_dim != self.decoder.config.hidden_size
|
167 |
+
and self.decoder.config.cross_attention_hidden_size is None
|
168 |
+
):
|
169 |
+
# encoder outputs might need to be projected to different dimension for decoder
|
170 |
+
self.enc_to_dec_proj = nn.Linear(self.encoder.config.hidden_size, self.decoder.config.hidden_size)
|
171 |
+
|
172 |
+
if self.encoder.get_output_embeddings() is not None:
|
173 |
+
raise ValueError(
|
174 |
+
f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head"
|
175 |
+
)
|
176 |
+
self.enc_loss_weight = config.ctc_weight
|
177 |
+
self.dec_loss_weight = 1 - config.ctc_weight
|
178 |
+
self.lsm_factor = config.lsm_factor
|
179 |
+
|
180 |
+
if config.shared_lm_head:
|
181 |
+
self.encoder.lm_head.weight = self.decoder.lm_head.weight
|
182 |
+
|
183 |
+
if (hasattr(config, "decoder_pos_emb_fixed") and config.decoder_pos_emb_fixed) or (
|
184 |
+
hasattr(config.decoder, "pos_emb_fixed") and config.decoder.pos_emb_fixed
|
185 |
+
):
|
186 |
+
self.decoder.transformer.wte = AdaptiveEmbedding(
|
187 |
+
n_token=config.decoder.vocab_size,
|
188 |
+
d_embed=config.decoder.hidden_size,
|
189 |
+
d_proj=config.decoder.hidden_size,
|
190 |
+
cutoffs=[],
|
191 |
+
)
|
192 |
+
self.decoder.transformer.wpe = PositionalEmbedding(demb=config.decoder.hidden_size)
|
193 |
+
self.decoder.post_init()
|
194 |
+
|
195 |
+
self.encoder_logits = None
|
196 |
+
self.encoder_output_lens = None
|
197 |
+
|
198 |
+
@classmethod
|
199 |
+
def from_encoder_decoder_pretrained(
|
200 |
+
cls,
|
201 |
+
encoder_pretrained_model_name_or_path: str = None,
|
202 |
+
decoder_pretrained_model_name_or_path: str = None,
|
203 |
+
*model_args,
|
204 |
+
**kwargs,
|
205 |
+
) -> PreTrainedModel:
|
206 |
+
kwargs_encoder = {
|
207 |
+
argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_")
|
208 |
+
}
|
209 |
+
|
210 |
+
kwargs_decoder = {
|
211 |
+
argument[len("decoder_") :]: value
|
212 |
+
for argument, value in kwargs.items()
|
213 |
+
if argument.startswith("decoder_") and argument != "decoder_start_token_id"
|
214 |
+
}
|
215 |
+
|
216 |
+
# remove encoder, decoder kwargs from kwargs
|
217 |
+
for key in kwargs_encoder.keys():
|
218 |
+
del kwargs["encoder_" + key]
|
219 |
+
for key in kwargs_decoder.keys():
|
220 |
+
del kwargs["decoder_" + key]
|
221 |
+
|
222 |
+
# Load and initialize the encoder and decoder
|
223 |
+
# The distinction between encoder and decoder at the model level is made
|
224 |
+
# by the value of the flag `is_decoder` that we need to set correctly.
|
225 |
+
encoder = kwargs_encoder.pop("model", None)
|
226 |
+
if encoder is None:
|
227 |
+
if encoder_pretrained_model_name_or_path is None:
|
228 |
+
raise ValueError(
|
229 |
+
"If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has "
|
230 |
+
"to be defined."
|
231 |
+
)
|
232 |
+
|
233 |
+
if "config" not in kwargs_encoder:
|
234 |
+
encoder_config, kwargs_encoder = AutoConfig.from_pretrained(
|
235 |
+
encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True
|
236 |
+
)
|
237 |
+
|
238 |
+
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
|
239 |
+
logger.info(
|
240 |
+
f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model "
|
241 |
+
"from a decoder model. Cross-attention and casual mask are disabled."
|
242 |
+
)
|
243 |
+
encoder_config.is_decoder = False
|
244 |
+
encoder_config.add_cross_attention = False
|
245 |
+
|
246 |
+
kwargs_encoder["config"] = encoder_config
|
247 |
+
|
248 |
+
encoder = CustomAutoModelForCTC.from_pretrained(
|
249 |
+
encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder
|
250 |
+
)
|
251 |
+
encoder.register_forward_hook(wav2vec2_for_ctc_forward_hook)
|
252 |
+
|
253 |
+
decoder = kwargs_decoder.pop("model", None)
|
254 |
+
if decoder is None:
|
255 |
+
if decoder_pretrained_model_name_or_path is None:
|
256 |
+
raise ValueError(
|
257 |
+
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
|
258 |
+
"to be defined."
|
259 |
+
)
|
260 |
+
|
261 |
+
if "config" not in kwargs_decoder:
|
262 |
+
decoder_config, kwargs_decoder = AutoConfig.from_pretrained(
|
263 |
+
decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
|
264 |
+
)
|
265 |
+
|
266 |
+
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
|
267 |
+
logger.info(
|
268 |
+
f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
|
269 |
+
f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
|
270 |
+
f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
|
271 |
+
)
|
272 |
+
decoder_config.is_decoder = True
|
273 |
+
decoder_config.add_cross_attention = True
|
274 |
+
|
275 |
+
kwargs_decoder["config"] = decoder_config
|
276 |
+
|
277 |
+
if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
|
278 |
+
logger.warning(
|
279 |
+
f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
|
280 |
+
f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
|
281 |
+
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
|
282 |
+
"passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a "
|
283 |
+
"`decoder_config` to `.from_encoder_decoder_pretrained(...)`"
|
284 |
+
)
|
285 |
+
|
286 |
+
decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
|
287 |
+
|
288 |
+
# instantiate config with corresponding kwargs
|
289 |
+
config = JointCTCAttentionEncoderDecoderConfig.from_encoder_decoder_configs(
|
290 |
+
encoder.config, decoder.config, **kwargs
|
291 |
+
)
|
292 |
+
|
293 |
+
# make sure input & output embeddings is not tied
|
294 |
+
config.tie_word_embeddings = False
|
295 |
+
return cls(encoder=encoder, decoder=decoder, config=config)
|
296 |
+
|
297 |
+
def forward(
|
298 |
+
self,
|
299 |
+
inputs: Optional[torch.FloatTensor] = None,
|
300 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
301 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
302 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
303 |
+
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
|
304 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
305 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
306 |
+
labels: Optional[torch.LongTensor] = None,
|
307 |
+
use_cache: Optional[bool] = None,
|
308 |
+
output_attentions: Optional[bool] = None,
|
309 |
+
output_hidden_states: Optional[bool] = None,
|
310 |
+
input_values: Optional[torch.FloatTensor] = None,
|
311 |
+
input_features: Optional[torch.FloatTensor] = None,
|
312 |
+
return_dict: Optional[bool] = None,
|
313 |
+
**kwargs,
|
314 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutputLosses]:
|
315 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
316 |
+
|
317 |
+
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
|
318 |
+
|
319 |
+
kwargs_decoder = {
|
320 |
+
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
|
321 |
+
}
|
322 |
+
|
323 |
+
if encoder_outputs is None:
|
324 |
+
if inputs is None:
|
325 |
+
if input_values is not None and input_features is not None:
|
326 |
+
raise ValueError("You cannot specify both input_values and input_features at the same time")
|
327 |
+
elif input_values is not None:
|
328 |
+
inputs = input_values
|
329 |
+
elif input_features is not None:
|
330 |
+
inputs = input_features
|
331 |
+
else:
|
332 |
+
raise ValueError("You have to specify either input_values or input_features")
|
333 |
+
|
334 |
+
encoder_outputs = self.encoder(
|
335 |
+
inputs,
|
336 |
+
attention_mask=attention_mask,
|
337 |
+
output_attentions=output_attentions,
|
338 |
+
output_hidden_states=output_hidden_states,
|
339 |
+
return_dict=return_dict,
|
340 |
+
labels=labels,
|
341 |
+
**kwargs_encoder,
|
342 |
+
)
|
343 |
+
elif isinstance(encoder_outputs, tuple):
|
344 |
+
encoder_outputs = CausalLMOutput(*encoder_outputs)
|
345 |
+
|
346 |
+
encoder_hidden_states = encoder_outputs.last_hidden_state
|
347 |
+
|
348 |
+
# optionally project encoder_hidden_states
|
349 |
+
if (
|
350 |
+
self.encoder_output_dim != self.decoder.config.hidden_size
|
351 |
+
and self.decoder.config.cross_attention_hidden_size is None
|
352 |
+
):
|
353 |
+
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
|
354 |
+
|
355 |
+
# compute correct encoder attention mask
|
356 |
+
if attention_mask is not None:
|
357 |
+
encoder_attention_mask = self.encoder._get_feature_vector_attention_mask(
|
358 |
+
encoder_hidden_states.shape[1], attention_mask
|
359 |
+
)
|
360 |
+
else:
|
361 |
+
encoder_attention_mask = None
|
362 |
+
|
363 |
+
if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
|
364 |
+
decoder_input_ids = shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
|
365 |
+
|
366 |
+
# Decode
|
367 |
+
decoder_outputs = self.decoder(
|
368 |
+
input_ids=decoder_input_ids,
|
369 |
+
attention_mask=decoder_attention_mask,
|
370 |
+
encoder_hidden_states=encoder_hidden_states,
|
371 |
+
encoder_attention_mask=encoder_attention_mask,
|
372 |
+
inputs_embeds=decoder_inputs_embeds,
|
373 |
+
output_attentions=output_attentions,
|
374 |
+
output_hidden_states=True
|
375 |
+
if hasattr(self.decoder, "head_weights") and len(self.decoder.head_weights) > 1
|
376 |
+
else output_hidden_states,
|
377 |
+
use_cache=use_cache,
|
378 |
+
past_key_values=past_key_values,
|
379 |
+
return_dict=return_dict,
|
380 |
+
**kwargs_decoder,
|
381 |
+
)
|
382 |
+
|
383 |
+
# Compute loss independent from decoder (as some shift the logits inside them)
|
384 |
+
loss = enc_loss = dec_loss = None
|
385 |
+
|
386 |
+
if labels is not None:
|
387 |
+
loss_fct = CrossEntropyLoss(label_smoothing=self.lsm_factor)
|
388 |
+
enc_loss = encoder_outputs.loss if return_dict else encoder_outputs[0]
|
389 |
+
if isinstance(self.decoder, GPT2LMMultiHeadModel) and len(self.decoder.head_weights) > 1:
|
390 |
+
dec_loss = torch.zeros_like(enc_loss)
|
391 |
+
lm_logits_per_layer = []
|
392 |
+
for index, lm_head, lm_weight in zip(
|
393 |
+
[*self.decoder.head_locations, -1],
|
394 |
+
[*self.decoder.additional_lm_heads, self.decoder.lm_head],
|
395 |
+
self.decoder.head_weights,
|
396 |
+
):
|
397 |
+
lm_logits = lm_head(decoder_outputs.hidden_states[index])
|
398 |
+
dec_loss += lm_weight * loss_fct(
|
399 |
+
lm_logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1)
|
400 |
+
)
|
401 |
+
lm_logits_per_layer.append(lm_logits)
|
402 |
+
if self.decoder.config.average_logits:
|
403 |
+
decoder_outputs.logits = torch.matmul(
|
404 |
+
torch.stack(lm_logits_per_layer).T,
|
405 |
+
torch.tensor(self.decoder.head_weights, device=lm_logits_per_layer[-1].device),
|
406 |
+
).T
|
407 |
+
|
408 |
+
else:
|
409 |
+
dec_logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
|
410 |
+
dec_loss = loss_fct(dec_logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1))
|
411 |
+
loss = self.enc_loss_weight * enc_loss + self.dec_loss_weight * dec_loss
|
412 |
+
|
413 |
+
if not return_dict:
|
414 |
+
if loss is not None:
|
415 |
+
return (loss,) + decoder_outputs + encoder_outputs
|
416 |
+
else:
|
417 |
+
return decoder_outputs + encoder_outputs
|
418 |
+
|
419 |
+
return Seq2SeqLMOutputLosses(
|
420 |
+
loss=loss,
|
421 |
+
enc_loss=enc_loss,
|
422 |
+
dec_loss=dec_loss,
|
423 |
+
logits=decoder_outputs.logits,
|
424 |
+
past_key_values=decoder_outputs.past_key_values,
|
425 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
426 |
+
decoder_attentions=decoder_outputs.attentions,
|
427 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
428 |
+
encoder_last_hidden_state=encoder_hidden_states,
|
429 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
430 |
+
encoder_attentions=encoder_outputs.attentions,
|
431 |
+
encoder_logits=encoder_outputs.logits,
|
432 |
+
)
|
433 |
+
|
434 |
+
def _get_logits_processor(
|
435 |
+
self,
|
436 |
+
generation_config: GenerationConfigCustom,
|
437 |
+
input_ids_seq_length: int,
|
438 |
+
encoder_input_ids: torch.LongTensor,
|
439 |
+
prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]],
|
440 |
+
logits_processor: Optional[LogitsProcessorList],
|
441 |
+
model_kwargs: Optional[Dict[str, Any]] = None,
|
442 |
+
negative_prompt_ids: Optional[torch.Tensor] = None,
|
443 |
+
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
444 |
+
) -> LogitsProcessorList:
|
445 |
+
# pylint: disable=no-member
|
446 |
+
processors = super()._get_logits_processor(
|
447 |
+
generation_config,
|
448 |
+
input_ids_seq_length,
|
449 |
+
encoder_input_ids,
|
450 |
+
prefix_allowed_tokens_fn,
|
451 |
+
logits_processor,
|
452 |
+
model_kwargs,
|
453 |
+
negative_prompt_ids,
|
454 |
+
negative_prompt_attention_mask,
|
455 |
+
)
|
456 |
+
if hasattr(generation_config, "ctc_weight") and generation_config.ctc_weight > 0:
|
457 |
+
if generation_config.num_beams <= 1:
|
458 |
+
processors.append(LogSoftmaxProcessor())
|
459 |
+
self.ctc_rescorer = CTCRescorerLogitsProcessor(
|
460 |
+
self.encoder_logits,
|
461 |
+
self.encoder_output_lens,
|
462 |
+
self.generation_config.pad_token_id,
|
463 |
+
self.generation_config.eos_token_id,
|
464 |
+
self.generation_config.ctc_margin,
|
465 |
+
self.generation_config.ctc_weight,
|
466 |
+
self.generation_config.num_beams,
|
467 |
+
self.generation_config.space_token_id if hasattr(self.generation_config, "space_token_id") else None,
|
468 |
+
self.generation_config.apply_eos_space_trick
|
469 |
+
if hasattr(self.generation_config, "apply_eos_space_trick")
|
470 |
+
else False,
|
471 |
+
self.generation_config.eos_space_trick_weight
|
472 |
+
if hasattr(self.generation_config, "eos_space_trick_weight")
|
473 |
+
else 0.0,
|
474 |
+
)
|
475 |
+
processors.append(self.ctc_rescorer)
|
476 |
+
if hasattr(generation_config, "lm_weight") and generation_config.lm_weight > 0:
|
477 |
+
if not hasattr(generation_config, "lm_model"):
|
478 |
+
raise ValueError("If `lm_weight` is specified, make sure that `lm_model` is defined.")
|
479 |
+
processors.append(
|
480 |
+
LMRescorerLogitsProcessor(generation_config.lm_weight, generation_config.lm_model, device=self.device)
|
481 |
+
)
|
482 |
+
return processors
|
483 |
+
|
484 |
+
def _prepare_encoder_decoder_kwargs_for_generation(
|
485 |
+
self, inputs_tensor: torch.Tensor, model_kwargs, model_input_name: Optional[str] = None
|
486 |
+
) -> Dict[str, Any]:
|
487 |
+
self.encoder_output_lens = self.encoder._get_feat_extract_output_lengths(
|
488 |
+
model_kwargs["attention_mask"].sum(dim=1)
|
489 |
+
)
|
490 |
+
# pylint: disable=E1101
|
491 |
+
model_kwargs = super()._prepare_encoder_decoder_kwargs_for_generation(
|
492 |
+
inputs_tensor, model_kwargs, model_input_name
|
493 |
+
)
|
494 |
+
self.encoder_logits = model_kwargs["encoder_outputs"].logits
|
495 |
+
return model_kwargs
|
496 |
+
|
497 |
+
@staticmethod
|
498 |
+
def _expand_inputs_for_generation(
|
499 |
+
expand_size: int = 1,
|
500 |
+
is_encoder_decoder: bool = False,
|
501 |
+
input_ids: Optional[torch.LongTensor] = None,
|
502 |
+
**model_kwargs,
|
503 |
+
) -> Tuple[torch.LongTensor, Dict[str, Any]]:
|
504 |
+
"""Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...]"""
|
505 |
+
|
506 |
+
def _expand_dict_for_generation(dict_to_expand):
|
507 |
+
for key in dict_to_expand:
|
508 |
+
if dict_to_expand[key] is not None and isinstance(dict_to_expand[key], torch.Tensor) and key != "loss":
|
509 |
+
dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
|
510 |
+
return dict_to_expand
|
511 |
+
|
512 |
+
if input_ids is not None:
|
513 |
+
input_ids = input_ids.repeat_interleave(expand_size, dim=0)
|
514 |
+
|
515 |
+
model_kwargs = _expand_dict_for_generation(model_kwargs)
|
516 |
+
|
517 |
+
if is_encoder_decoder:
|
518 |
+
if model_kwargs.get("encoder_outputs") is None:
|
519 |
+
raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
|
520 |
+
model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])
|
521 |
+
model_kwargs["encoder_outputs"].last_hidden_state = model_kwargs[
|
522 |
+
"encoder_outputs"
|
523 |
+
].last_hidden_state.repeat_interleave(expand_size, dim=0)
|
524 |
+
|
525 |
+
return input_ids, model_kwargs
|
526 |
+
|
527 |
+
@torch.no_grad()
|
528 |
+
def generate(
|
529 |
+
self,
|
530 |
+
inputs: Optional[torch.Tensor] = None,
|
531 |
+
generation_config: Optional[GenerationConfigCustom] = None,
|
532 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
533 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
534 |
+
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
535 |
+
synced_gpus: Optional[bool] = None,
|
536 |
+
assistant_model: Optional["PreTrainedModel"] = None,
|
537 |
+
streamer: Optional["BaseStreamer"] = None,
|
538 |
+
**kwargs,
|
539 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
540 |
+
if "encoder_outputs" in kwargs:
|
541 |
+
self.encoder_logits = kwargs["encoder_outputs"].logits
|
542 |
+
self.encoder_output_lens = self.encoder._get_feat_extract_output_lengths(
|
543 |
+
kwargs["attention_mask"].sum(dim=1)
|
544 |
+
)
|
545 |
+
# pylint: disable=E1101
|
546 |
+
output = super().generate(
|
547 |
+
inputs,
|
548 |
+
generation_config,
|
549 |
+
logits_processor,
|
550 |
+
stopping_criteria,
|
551 |
+
prefix_allowed_tokens_fn,
|
552 |
+
synced_gpus,
|
553 |
+
assistant_model,
|
554 |
+
streamer,
|
555 |
+
**kwargs,
|
556 |
+
)
|
557 |
+
self.encoder_logits = None
|
558 |
+
self.encoder_output_lens = None
|
559 |
+
return output
|
560 |
+
|
561 |
+
|
562 |
+
AutoConfig.register("joint_aed_ctc_speech-encoder-decoder", JointCTCAttentionEncoderDecoderConfig)
|
563 |
+
AutoModelForSpeechSeq2Seq.register(JointCTCAttentionEncoderDecoderConfig, JointCTCAttentionEncoderDecoder)
|
multi_head_gpt2.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.utils.checkpoint
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import CrossEntropyLoss
|
7 |
+
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
8 |
+
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
|
9 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
|
10 |
+
|
11 |
+
|
12 |
+
class GPT2MultiHeadConfig(GPT2Config):
|
13 |
+
model_type = "gpt2-multi-head"
|
14 |
+
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
head_locations=None,
|
18 |
+
head_weights=None,
|
19 |
+
tie_additional_weights=False,
|
20 |
+
average_logits=False,
|
21 |
+
*args,
|
22 |
+
**kwargs,
|
23 |
+
):
|
24 |
+
super().__init__(*args, **kwargs)
|
25 |
+
self.head_locations = head_locations
|
26 |
+
self.head_weights = head_weights
|
27 |
+
self.tie_additional_weights = tie_additional_weights
|
28 |
+
self.average_logits = average_logits
|
29 |
+
|
30 |
+
|
31 |
+
class GPT2LMMultiHeadModel(GPT2LMHeadModel):
|
32 |
+
config_class = GPT2MultiHeadConfig
|
33 |
+
|
34 |
+
def __init__(self, config: GPT2MultiHeadConfig):
|
35 |
+
super().__init__(config)
|
36 |
+
if config.head_locations is not None:
|
37 |
+
if not len(config.head_locations) + 1 == len(config.head_weights):
|
38 |
+
raise ValueError("The number of head locations should be equal to the number of head weights minus 1")
|
39 |
+
self.head_locations = config.head_locations
|
40 |
+
self.additional_lm_heads = nn.ModuleList(
|
41 |
+
[nn.Linear(config.n_embd, config.vocab_size, bias=False) for _ in config.head_locations]
|
42 |
+
)
|
43 |
+
self.head_weights = config.head_weights
|
44 |
+
else:
|
45 |
+
self.head_locations = []
|
46 |
+
self.additional_lm_heads = nn.ModuleList([])
|
47 |
+
self.head_weights = [1.0]
|
48 |
+
self.post_init()
|
49 |
+
|
50 |
+
def tie_weights(self):
|
51 |
+
"""
|
52 |
+
Tie the weights between the input embeddings and the output embeddings.
|
53 |
+
|
54 |
+
If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
|
55 |
+
weights instead.
|
56 |
+
"""
|
57 |
+
super().tie_weights()
|
58 |
+
if hasattr(self, "additional_lm_heads") and getattr(self.config, "tie_additional_weights", False):
|
59 |
+
input_embeddings = self.get_input_embeddings()
|
60 |
+
for classifier in self.additional_lm_heads:
|
61 |
+
if self.config.torchscript:
|
62 |
+
classifier.weight = nn.Parameter(input_embeddings.weight.clone())
|
63 |
+
else:
|
64 |
+
classifier.weight = input_embeddings.weight
|
65 |
+
|
66 |
+
if getattr(classifier, "bias", None) is not None:
|
67 |
+
classifier.bias.data = nn.functional.pad(
|
68 |
+
classifier.bias.data,
|
69 |
+
(
|
70 |
+
0,
|
71 |
+
classifier.weight.shape[0] - classifier.bias.shape[0],
|
72 |
+
),
|
73 |
+
"constant",
|
74 |
+
0,
|
75 |
+
)
|
76 |
+
if hasattr(classifier, "out_features") and hasattr(input_embeddings, "num_embeddings"):
|
77 |
+
classifier.out_features = input_embeddings.num_embeddings
|
78 |
+
|
79 |
+
def forward(
|
80 |
+
self,
|
81 |
+
input_ids: Optional[torch.LongTensor] = None,
|
82 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
83 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
84 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
85 |
+
position_ids: Optional[torch.LongTensor] = None,
|
86 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
87 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
88 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
89 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
90 |
+
labels: Optional[torch.LongTensor] = None,
|
91 |
+
use_cache: Optional[bool] = None,
|
92 |
+
output_attentions: Optional[bool] = None,
|
93 |
+
output_hidden_states: Optional[bool] = None,
|
94 |
+
return_dict: Optional[bool] = None,
|
95 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
96 |
+
r"""
|
97 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
98 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
99 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
100 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
101 |
+
"""
|
102 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
103 |
+
|
104 |
+
transformer_outputs = self.transformer(
|
105 |
+
input_ids,
|
106 |
+
past_key_values=past_key_values,
|
107 |
+
attention_mask=attention_mask,
|
108 |
+
token_type_ids=token_type_ids,
|
109 |
+
position_ids=position_ids,
|
110 |
+
head_mask=head_mask,
|
111 |
+
inputs_embeds=inputs_embeds,
|
112 |
+
encoder_hidden_states=encoder_hidden_states,
|
113 |
+
encoder_attention_mask=encoder_attention_mask,
|
114 |
+
use_cache=use_cache,
|
115 |
+
output_attentions=output_attentions,
|
116 |
+
output_hidden_states=True,
|
117 |
+
return_dict=return_dict,
|
118 |
+
)
|
119 |
+
hidden_states = transformer_outputs[2]
|
120 |
+
|
121 |
+
# Set device for model parallelism
|
122 |
+
if self.model_parallel:
|
123 |
+
torch.cuda.set_device(self.transformer.first_device)
|
124 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
125 |
+
|
126 |
+
lm_logits = self.lm_head(hidden_states[-1])
|
127 |
+
loss = None
|
128 |
+
if labels is not None:
|
129 |
+
loss = torch.tensor(0.0, device=hidden_states[-1].device)
|
130 |
+
lm_logits = []
|
131 |
+
loss_fct = CrossEntropyLoss()
|
132 |
+
|
133 |
+
for index, lm_head, lm_weight in zip(
|
134 |
+
[*self.head_locations, -1],
|
135 |
+
[*self.additional_lm_heads, self.lm_head],
|
136 |
+
self.head_weights,
|
137 |
+
):
|
138 |
+
lm_logits.append(lm_head(hidden_states[index]))
|
139 |
+
# Shift so that tokens < n predict n
|
140 |
+
shift_logits = lm_logits[-1][..., :-1, :].contiguous()
|
141 |
+
shift_labels = labels[..., 1:].contiguous()
|
142 |
+
# Flatten the tokens
|
143 |
+
loss += lm_weight * loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
144 |
+
|
145 |
+
if self.config.average_logits:
|
146 |
+
lm_logits = (torch.vstack(lm_logits) * torch.tensor(self.head_weights)).mean(dim=0)
|
147 |
+
else:
|
148 |
+
lm_logits = lm_logits[-1]
|
149 |
+
if not return_dict:
|
150 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
151 |
+
return ((loss,) + output) if loss is not None else output
|
152 |
+
|
153 |
+
return CausalLMOutputWithCrossAttentions(
|
154 |
+
loss=loss,
|
155 |
+
logits=lm_logits,
|
156 |
+
past_key_values=transformer_outputs.past_key_values,
|
157 |
+
hidden_states=transformer_outputs.hidden_states,
|
158 |
+
attentions=transformer_outputs.attentions,
|
159 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
160 |
+
)
|
residual_clasiffier_gpt2.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.utils.checkpoint
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import CrossEntropyLoss
|
7 |
+
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
8 |
+
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
|
9 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
|
10 |
+
|
11 |
+
|
12 |
+
class GPT2ResidualsLMHeadConfig(GPT2Config):
|
13 |
+
model_type = "gpt2-residuals-head"
|
14 |
+
|
15 |
+
def __init__(self, connected_residuals=None, *args, **kwargs):
|
16 |
+
super().__init__(*args, **kwargs)
|
17 |
+
self.connected_residuals = connected_residuals
|
18 |
+
|
19 |
+
|
20 |
+
class GPT2ResidualsLMHeadModel(GPT2LMHeadModel):
|
21 |
+
config_class = GPT2ResidualsLMHeadConfig
|
22 |
+
|
23 |
+
def __init__(self, config: GPT2ResidualsLMHeadConfig):
|
24 |
+
super().__init__(config)
|
25 |
+
self.connected_residuals = config.connected_residuals
|
26 |
+
self.lm_head = nn.Linear(config.n_embd * len(self.connected_residuals), config.vocab_size, bias=False)
|
27 |
+
self.post_init()
|
28 |
+
|
29 |
+
def forward(
|
30 |
+
self,
|
31 |
+
input_ids: Optional[torch.LongTensor] = None,
|
32 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
33 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
34 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
35 |
+
position_ids: Optional[torch.LongTensor] = None,
|
36 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
37 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
38 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
39 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
40 |
+
labels: Optional[torch.LongTensor] = None,
|
41 |
+
use_cache: Optional[bool] = None,
|
42 |
+
output_attentions: Optional[bool] = None,
|
43 |
+
output_hidden_states: Optional[bool] = None,
|
44 |
+
return_dict: Optional[bool] = None,
|
45 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
46 |
+
r"""
|
47 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
48 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
49 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
50 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
51 |
+
"""
|
52 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
53 |
+
|
54 |
+
transformer_outputs = self.transformer(
|
55 |
+
input_ids,
|
56 |
+
past_key_values=past_key_values,
|
57 |
+
attention_mask=attention_mask,
|
58 |
+
token_type_ids=token_type_ids,
|
59 |
+
position_ids=position_ids,
|
60 |
+
head_mask=head_mask,
|
61 |
+
inputs_embeds=inputs_embeds,
|
62 |
+
encoder_hidden_states=encoder_hidden_states,
|
63 |
+
encoder_attention_mask=encoder_attention_mask,
|
64 |
+
use_cache=use_cache,
|
65 |
+
output_attentions=output_attentions,
|
66 |
+
output_hidden_states=True,
|
67 |
+
return_dict=return_dict,
|
68 |
+
)
|
69 |
+
hidden_states = transformer_outputs[2]
|
70 |
+
|
71 |
+
# Set device for model parallelism
|
72 |
+
if self.model_parallel:
|
73 |
+
torch.cuda.set_device(self.transformer.first_device)
|
74 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
75 |
+
|
76 |
+
hidden_states = torch.concat([hidden_states[index] for index in self.connected_residuals], dim=-1)
|
77 |
+
lm_logits = self.lm_head(hidden_states)
|
78 |
+
|
79 |
+
loss = None
|
80 |
+
if labels is not None:
|
81 |
+
# Shift so that tokens < n predict n
|
82 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
83 |
+
shift_labels = labels[..., 1:].contiguous()
|
84 |
+
# Flatten the tokens
|
85 |
+
loss_fct = CrossEntropyLoss()
|
86 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
87 |
+
|
88 |
+
if not return_dict:
|
89 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
90 |
+
return ((loss,) + output) if loss is not None else output
|
91 |
+
|
92 |
+
return CausalLMOutputWithCrossAttentions(
|
93 |
+
loss=loss,
|
94 |
+
logits=lm_logits,
|
95 |
+
past_key_values=transformer_outputs.past_key_values,
|
96 |
+
hidden_states=transformer_outputs.hidden_states,
|
97 |
+
attentions=transformer_outputs.attentions,
|
98 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
99 |
+
)
|