BUAADreamer commited on
Commit
cb0b9da
1 Parent(s): b6e1baf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -200
README.md CHANGED
@@ -1,200 +1,103 @@
1
- ---
2
- library_name: transformers
3
- tags:
4
- - llama-factory
5
- ---
6
-
7
- # Model Card for Model ID
8
-
9
- <!-- Provide a quick summary of what the model is/does. -->
10
-
11
-
12
-
13
- ## Model Details
14
-
15
- ### Model Description
16
-
17
- <!-- Provide a longer summary of what this model is. -->
18
-
19
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
20
-
21
- - **Developed by:** [More Information Needed]
22
- - **Funded by [optional]:** [More Information Needed]
23
- - **Shared by [optional]:** [More Information Needed]
24
- - **Model type:** [More Information Needed]
25
- - **Language(s) (NLP):** [More Information Needed]
26
- - **License:** [More Information Needed]
27
- - **Finetuned from model [optional]:** [More Information Needed]
28
-
29
- ### Model Sources [optional]
30
-
31
- <!-- Provide the basic links for the model. -->
32
-
33
- - **Repository:** [More Information Needed]
34
- - **Paper [optional]:** [More Information Needed]
35
- - **Demo [optional]:** [More Information Needed]
36
-
37
- ## Uses
38
-
39
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
40
-
41
- ### Direct Use
42
-
43
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
44
-
45
- [More Information Needed]
46
-
47
- ### Downstream Use [optional]
48
-
49
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
50
-
51
- [More Information Needed]
52
-
53
- ### Out-of-Scope Use
54
-
55
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
56
-
57
- [More Information Needed]
58
-
59
- ## Bias, Risks, and Limitations
60
-
61
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
62
-
63
- [More Information Needed]
64
-
65
- ### Recommendations
66
-
67
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
68
-
69
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
70
-
71
- ## How to Get Started with the Model
72
-
73
- Use the code below to get started with the model.
74
-
75
- [More Information Needed]
76
-
77
- ## Training Details
78
-
79
- ### Training Data
80
-
81
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
82
-
83
- [More Information Needed]
84
-
85
- ### Training Procedure
86
-
87
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
88
-
89
- #### Preprocessing [optional]
90
-
91
- [More Information Needed]
92
-
93
-
94
- #### Training Hyperparameters
95
-
96
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
97
-
98
- #### Speeds, Sizes, Times [optional]
99
-
100
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
101
-
102
- [More Information Needed]
103
-
104
- ## Evaluation
105
-
106
- <!-- This section describes the evaluation protocols and provides the results. -->
107
-
108
- ### Testing Data, Factors & Metrics
109
-
110
- #### Testing Data
111
-
112
- <!-- This should link to a Dataset Card if possible. -->
113
-
114
- [More Information Needed]
115
-
116
- #### Factors
117
-
118
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
119
-
120
- [More Information Needed]
121
-
122
- #### Metrics
123
-
124
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
125
-
126
- [More Information Needed]
127
-
128
- ### Results
129
-
130
- [More Information Needed]
131
-
132
- #### Summary
133
-
134
-
135
-
136
- ## Model Examination [optional]
137
-
138
- <!-- Relevant interpretability work for the model goes here -->
139
-
140
- [More Information Needed]
141
-
142
- ## Environmental Impact
143
-
144
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
145
-
146
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
147
-
148
- - **Hardware Type:** [More Information Needed]
149
- - **Hours used:** [More Information Needed]
150
- - **Cloud Provider:** [More Information Needed]
151
- - **Compute Region:** [More Information Needed]
152
- - **Carbon Emitted:** [More Information Needed]
153
-
154
- ## Technical Specifications [optional]
155
-
156
- ### Model Architecture and Objective
157
-
158
- [More Information Needed]
159
-
160
- ### Compute Infrastructure
161
-
162
- [More Information Needed]
163
-
164
- #### Hardware
165
-
166
- [More Information Needed]
167
-
168
- #### Software
169
-
170
- [More Information Needed]
171
-
172
- ## Citation [optional]
173
-
174
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
175
-
176
- **BibTeX:**
177
-
178
- [More Information Needed]
179
-
180
- **APA:**
181
-
182
- [More Information Needed]
183
-
184
- ## Glossary [optional]
185
-
186
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
187
-
188
- [More Information Needed]
189
-
190
- ## More Information [optional]
191
-
192
- [More Information Needed]
193
-
194
- ## Model Card Authors [optional]
195
-
196
- [More Information Needed]
197
-
198
- ## Model Card Contact
199
-
200
- [More Information Needed]
 
1
+ # PaliGemma-3B-Chat-v0.2
2
+
3
+ This model is fine-tuned from [google/paligemma-3b-mix-448](https://huggingface.co/google/paligemma-3b-mix-448) for multiturn chat completions.
4
+
5
+ <!-- Try our live demo at: https://huggingface.co/spaces/llamafactory/PaliGemma-3B-Chat-v0.1 -->
6
+
7
+ <!-- ![example_en](assets/example_en.png)
8
+ ![example_zh](assets/example_zh.png)
9
+ ![example_ja](assets/example_ja.png) -->
10
+
11
+ ## Usage
12
+
13
+ ```python
14
+ import requests
15
+ import torch
16
+ from PIL import Image
17
+ from transformers import AutoModelForVision2Seq, AutoProcessor, AutoTokenizer, TextStreamer
18
+
19
+ model_id = "BUAADreamer/PaliGemma-3B-Chat-v0.2"
20
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
21
+ processor = AutoProcessor.from_pretrained(model_id)
22
+ model = AutoModelForVision2Seq.from_pretrained(model_id, torch_dtype="auto", device_map="auto")
23
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
24
+
25
+ url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
26
+ image = Image.open(requests.get(url, stream=True).raw)
27
+ pixel_values = processor(images=[image], return_tensors="pt").to(model.device)["pixel_values"]
28
+
29
+ messages = [
30
+ {"role": "user", "content": "What is in this image?"}
31
+ ]
32
+ input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
33
+ image_token_id = tokenizer.convert_tokens_to_ids("<image>")
34
+ image_prefix = torch.empty((1, getattr(processor, "image_seq_length")), dtype=input_ids.dtype).fill_(image_token_id)
35
+ input_ids = torch.cat((image_prefix, input_ids), dim=-1).to(model.device)
36
+
37
+ generate_ids = model.generate(input_ids, pixel_values=pixel_values, streamer=streamer, max_new_tokens=50)
38
+ ```
39
+
40
+ ## Training procedure
41
+
42
+ We used [LLaMA Factory](https://github.com/hiyouga/LLaMA-Factory) to fine-tune this model. During fine-tuning, we freezed the vision tower and adjusted the parameters in the language model and projector layer.
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 0.000003
48
+ - num_train_epochs: 2.0
49
+ - train_batch_size: 4
50
+ - gradient_accumulation_steps: 16
51
+ - total_train_batch_size: 64
52
+ - seed: 42
53
+ - lr_scheduler_type: cosine
54
+ - mixed_precision_training: bf16
55
+
56
+ <details>
57
+ <summary><b>Show Llama Factory Config [CLICK TO EXPAND]</b></summary>
58
+
59
+ ```yaml
60
+ ### model
61
+ model_name_or_path: google/paligemma-3b-mix-448
62
+ visual_inputs: true
63
+
64
+ ### method
65
+ stage: sft
66
+ do_train: true
67
+ finetuning_type: full
68
+
69
+ ### ddp
70
+ ddp_timeout: 180000000
71
+ deepspeed: examples/deepspeed/ds_z3_config.json
72
+
73
+ ### dataset
74
+ dataset: identity,llava_150k_en,llava_150k_zh
75
+ template: gemma
76
+ cutoff_len: 1536
77
+ overwrite_cache: true
78
+ preprocessing_num_workers: 16
79
+ tokenized_path: cache/paligemma-identity-llava-zh-en-300k
80
+
81
+ ### output
82
+ output_dir: models/paligemma-3b-chat-v0.2
83
+ logging_steps: 10
84
+ save_steps: 1000
85
+ plot_loss: true
86
+
87
+ ### train
88
+ per_device_train_batch_size: 1
89
+ gradient_accumulation_steps: 16
90
+ learning_rate: 0.000003
91
+ num_train_epochs: 2.0
92
+ lr_scheduler_type: cosine
93
+ warmup_steps: 50
94
+ bf16: true
95
+ do_eval: false
96
+ ```
97
+
98
+ </details>
99
+
100
+ ### Framework versions
101
+
102
+ - Pytorch 2.3.0
103
+ - Transformers 4.41.0