|
import torch |
|
import numpy as np |
|
from data import so3_utils |
|
from data import utils as du |
|
from scipy.spatial.transform import Rotation |
|
from data import all_atom |
|
import copy |
|
from scipy.optimize import linear_sum_assignment |
|
|
|
|
|
def _centered_gaussian(num_batch, num_res, device): |
|
noise = torch.randn(num_batch, num_res, 3, device=device) |
|
return noise - torch.mean(noise, dim=-2, keepdims=True) |
|
|
|
def _uniform_so3(num_batch, num_res, device): |
|
return torch.tensor( |
|
Rotation.random(num_batch*num_res).as_matrix(), |
|
device=device, |
|
dtype=torch.float32, |
|
).reshape(num_batch, num_res, 3, 3) |
|
|
|
def _trans_diffuse_mask(trans_t, trans_1, diffuse_mask): |
|
return trans_t * diffuse_mask[..., None] + trans_1 * (1 - diffuse_mask[..., None]) |
|
|
|
def _rots_diffuse_mask(rotmats_t, rotmats_1, diffuse_mask): |
|
return ( |
|
rotmats_t * diffuse_mask[..., None, None] |
|
+ rotmats_1 * (1 - diffuse_mask[..., None, None]) |
|
) |
|
|
|
|
|
class Interpolant: |
|
|
|
def __init__(self, cfg): |
|
self._cfg = cfg |
|
self._rots_cfg = cfg.rots |
|
self._trans_cfg = cfg.trans |
|
self._sample_cfg = cfg.sampling |
|
self.add_noise = cfg.add_noise |
|
self._igso3 = None |
|
|
|
@property |
|
def igso3(self): |
|
if self._igso3 is None: |
|
sigma_grid = torch.linspace(0.1, 1.5, 1000) |
|
self._igso3 = so3_utils.SampleIGSO3( |
|
1000, sigma_grid, cache_dir='.cache') |
|
return self._igso3 |
|
|
|
def set_device(self, device): |
|
self._device = device |
|
|
|
def sample_t(self, num_batch): |
|
|
|
t = torch.rand(num_batch, device=self._device) |
|
return t * (1 - 2*self._cfg.min_t) + self._cfg.min_t |
|
|
|
def _esmfold_gaussian(self, num_batch, num_res, device, trans_esmfold): |
|
noise = torch.randn(num_batch, num_res, 3, device=device) |
|
noise = self._trans_cfg.noise_scale * noise + trans_esmfold |
|
return noise - torch.mean(noise, dim=-2, keepdims=True) |
|
|
|
def _corrupt_trans(self, trans_1, t, res_mask, trans_esmfold): |
|
|
|
|
|
|
|
if self.add_noise: |
|
trans_0 = self._esmfold_gaussian(*res_mask.shape, self._device, trans_esmfold) |
|
else: |
|
trans_0 = trans_esmfold |
|
|
|
|
|
trans_0 = self._batch_ot(trans_0, trans_1, res_mask) |
|
trans_t = (1 - t[..., None]) * trans_0 + t[..., None] * trans_1 |
|
trans_t = _trans_diffuse_mask(trans_t, trans_1, res_mask) |
|
return trans_t * res_mask[..., None] |
|
|
|
def _batch_ot(self, trans_0, trans_1, res_mask): |
|
num_batch, num_res = trans_0.shape[:2] |
|
noise_idx, gt_idx = torch.where( |
|
torch.ones(num_batch, num_batch)) |
|
batch_nm_0 = trans_0[noise_idx] |
|
batch_nm_1 = trans_1[gt_idx] |
|
batch_mask = res_mask[gt_idx] |
|
aligned_nm_0, aligned_nm_1, _ = du.batch_align_structures( |
|
batch_nm_0, batch_nm_1, mask=batch_mask |
|
) |
|
|
|
aligned_nm_0 = aligned_nm_0.reshape(num_batch, num_batch, num_res, 3) |
|
aligned_nm_1 = aligned_nm_1.reshape(num_batch, num_batch, num_res, 3) |
|
|
|
|
|
batch_mask = batch_mask.reshape(num_batch, num_batch, num_res) |
|
cost_matrix = torch.sum( |
|
torch.linalg.norm(aligned_nm_0 - aligned_nm_1, dim=-1), dim=-1 |
|
) / torch.sum(batch_mask, dim=-1) |
|
noise_perm, gt_perm = linear_sum_assignment(du.to_numpy(cost_matrix)) |
|
return aligned_nm_0[(tuple(gt_perm), tuple(noise_perm))] |
|
|
|
|
|
def _esmfold_igso3(self, res_mask, rotmats_esmfold): |
|
num_batch, num_res = res_mask.shape |
|
noisy_rotmats = self.igso3.sample( |
|
torch.tensor([self._rots_cfg.noise_scale]), |
|
num_batch*num_res |
|
).to(self._device) |
|
noisy_rotmats = noisy_rotmats.reshape(num_batch, num_res, 3, 3) |
|
rotmats_0 = torch.einsum( |
|
"...ij,...jk->...ik", rotmats_esmfold, noisy_rotmats) |
|
return rotmats_0 |
|
|
|
def _corrupt_rotmats(self, rotmats_1, t, res_mask, rotmats_esmfold): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.add_noise: |
|
rotmats_0 = self._esmfold_igso3(res_mask, rotmats_esmfold) |
|
else: |
|
rotmats_0 = rotmats_esmfold |
|
|
|
|
|
rotmats_t = so3_utils.geodesic_t(t[..., None], rotmats_1, rotmats_0) |
|
identity = torch.eye(3, device=self._device) |
|
rotmats_t = ( |
|
rotmats_t * res_mask[..., None, None] |
|
+ identity[None, None] * (1 - res_mask[..., None, None]) |
|
) |
|
return _rots_diffuse_mask(rotmats_t, rotmats_1, res_mask) |
|
|
|
def corrupt_batch(self, batch): |
|
noisy_batch = copy.deepcopy(batch) |
|
|
|
|
|
trans_1 = batch['trans_1'] |
|
|
|
|
|
rotmats_1 = batch['rotmats_1'] |
|
|
|
|
|
res_mask = batch['res_mask'] |
|
num_batch, _ = res_mask.shape |
|
|
|
|
|
t = self.sample_t(num_batch)[:, None] |
|
noisy_batch['t'] = t |
|
|
|
|
|
trans_t = self._corrupt_trans(trans_1, t, res_mask, batch['trans_esmfold']) |
|
|
|
noisy_batch['trans_t'] = trans_t |
|
|
|
rotmats_t = self._corrupt_rotmats(rotmats_1, t, res_mask, batch['rotmats_esmfold']) |
|
|
|
noisy_batch['rotmats_t'] = rotmats_t |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return noisy_batch |
|
|
|
def rot_sample_kappa(self, t): |
|
if self._rots_cfg.sample_schedule == 'exp': |
|
return 1 - torch.exp(-t*self._rots_cfg.exp_rate) |
|
elif self._rots_cfg.sample_schedule == 'linear': |
|
return t |
|
else: |
|
raise ValueError( |
|
f'Invalid schedule: {self._rots_cfg.sample_schedule}') |
|
|
|
def _trans_euler_step(self, d_t, t, trans_1, trans_t): |
|
trans_vf = (trans_1 - trans_t) / (1 - t) |
|
return trans_t + trans_vf * d_t |
|
|
|
def _rots_euler_step(self, d_t, t, rotmats_1, rotmats_t): |
|
if self._rots_cfg.sample_schedule == 'linear': |
|
scaling = 1 / (1 - t) |
|
elif self._rots_cfg.sample_schedule == 'exp': |
|
scaling = self._rots_cfg.exp_rate |
|
else: |
|
raise ValueError( |
|
f'Unknown sample schedule {self._rots_cfg.sample_schedule}') |
|
return so3_utils.geodesic_t( |
|
scaling * d_t, rotmats_1, rotmats_t) |
|
|
|
def sample( |
|
self, |
|
batch, |
|
model, |
|
): |
|
res_mask = batch['res_mask'] |
|
num_batch = batch['aatype'].shape[0] |
|
num_res = batch['aatype'].shape[1] |
|
aatype = batch['aatype'] |
|
motif_mask = batch.get('motif_mask',torch.ones(aatype.shape)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.add_noise: |
|
trans_0 = self._esmfold_gaussian(*res_mask.shape, self._device, batch['trans_esmfold']) |
|
rotmats_0 = self._esmfold_igso3(res_mask, batch['rotmats_esmfold']) |
|
else: |
|
trans_0 = batch['trans_esmfold'] |
|
rotmats_0 = batch['rotmats_esmfold'] |
|
|
|
|
|
if not torch.all(motif_mask==torch.ones(aatype.shape,device=motif_mask.device)): |
|
trans_0 = motif_mask[...,None]*trans_0+(1-motif_mask[...,None])*batch['trans_fix'] |
|
rotmats_0 = motif_mask[...,None,None]*rotmats_0+(1-motif_mask[...,None,None])*batch['rotmats_fix'] |
|
|
|
|
|
|
|
|
|
ts = torch.linspace( |
|
self._cfg.min_t, 1.0, self._sample_cfg.num_timesteps) |
|
|
|
|
|
|
|
|
|
|
|
|
|
t_1 = ts[0] |
|
|
|
prot_traj = [(trans_0, rotmats_0)] |
|
clean_traj = [] |
|
for t_2 in ts[1:]: |
|
|
|
|
|
trans_t_1, rotmats_t_1 = prot_traj[-1] |
|
batch['trans_t'] = trans_t_1 |
|
batch['rotmats_t'] = rotmats_t_1 |
|
t = torch.ones((num_batch, 1), device=self._device) * t_1 |
|
batch['t'] = t |
|
with torch.no_grad(): |
|
model_out = model(batch) |
|
|
|
|
|
|
|
|
|
pred_trans_1 = model_out['pred_trans'] |
|
pred_rotmats_1 = model_out['pred_rotmats'] |
|
if not torch.all(motif_mask==torch.ones(aatype.shape,device=motif_mask.device)): |
|
pred_trans_1 = motif_mask[...,None]* pred_trans_1+(1-motif_mask[...,None])*batch['trans_fix'] |
|
pred_rotmats_1 = motif_mask[...,None,None]*pred_rotmats_1+(1-motif_mask[...,None,None])*batch['rotmats_fix'] |
|
|
|
|
|
clean_traj.append( |
|
(pred_trans_1.detach(), pred_rotmats_1.detach()) |
|
) |
|
if self._cfg.self_condition: |
|
batch['trans_sc'] = pred_trans_1 |
|
|
|
|
|
d_t = t_2 - t_1 |
|
|
|
|
|
trans_t_2 = self._trans_euler_step( |
|
d_t, t_1, pred_trans_1, trans_t_1) |
|
rotmats_t_2 = self._rots_euler_step( |
|
d_t, t_1, pred_rotmats_1, rotmats_t_1) |
|
if not torch.all(motif_mask==torch.ones(aatype.shape,device=motif_mask.device)): |
|
trans_t_2 = motif_mask[...,None]* trans_t_2+(1-motif_mask[...,None])*batch['trans_fix'] |
|
rotmats_t_2 = motif_mask[...,None,None]*rotmats_t_2+(1-motif_mask[...,None,None])*batch['rotmats_fix'] |
|
|
|
|
|
|
|
prot_traj.append((trans_t_2, rotmats_t_2)) |
|
t_1 = t_2 |
|
|
|
|
|
t_1 = ts[-1] |
|
trans_t_1, rotmats_t_1 = prot_traj[-1] |
|
batch['trans_t'] = trans_t_1 |
|
batch['rotmats_t'] = rotmats_t_1 |
|
batch['t'] = torch.ones((num_batch, 1), device=self._device) * t_1 |
|
with torch.no_grad(): |
|
model_out = model(batch) |
|
|
|
|
|
pred_trans_1 = model_out['pred_trans'] |
|
pred_rotmats_1 = model_out['pred_rotmats'] |
|
if not torch.all(motif_mask==torch.ones(aatype.shape,device=motif_mask.device)): |
|
pred_trans_1 = motif_mask[...,None]* pred_trans_1+(1-motif_mask[...,None])*batch['trans_fix'] |
|
pred_rotmats_1 = motif_mask[...,None,None]*pred_rotmats_1+(1-motif_mask[...,None,None])*batch['rotmats_fix'] |
|
|
|
|
|
clean_traj.append( |
|
(pred_trans_1.detach(), pred_rotmats_1.detach()) |
|
) |
|
prot_traj.append((pred_trans_1, pred_rotmats_1)) |
|
|
|
|
|
atom37_traj = all_atom.transrot_to_atom37(prot_traj, res_mask, aatype=aatype, torsions_with_CB=model_out['pred_torsions_with_CB']) |
|
clean_atom37_traj = all_atom.transrot_to_atom37(clean_traj, res_mask, aatype=aatype, torsions_with_CB=model_out['pred_torsions_with_CB']) |
|
|
|
return atom37_traj, clean_atom37_traj, clean_traj |
|
|