BK-Lee commited on
Commit
e872e5e
1 Parent(s): ca61cc8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -0
README.md CHANGED
@@ -1,3 +1,60 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+
5
+ ### Simple running code is based on [CoLLaVO-Github](https://github.com/ByungKwanLee/CoLLaVO).
6
+
7
+ You need only the following seven steps.
8
+
9
+ ### [0] Download Github Code of CoLLaVO, install the required libraries, set the necessary environment variable (README.md explains in detail! Don't Worry!).
10
+
11
+ ```bash
12
+ git clone https://github.com/ByungKwanLee/CoLLaVO
13
+ bash install
14
+ ```
15
+
16
+ ### [1] Loading Image
17
+
18
+ ```python
19
+ from PIL import Image
20
+ from torchvision.transforms import Resize
21
+ from torchvision.transforms.functional import pil_to_tensor
22
+ image_path = "figures/crayon_image.jpg"
23
+ image = Resize(size=(490, 490), antialias=False)(pil_to_tensor(Image.open(image_path)))
24
+ ```
25
+
26
+ ### [2] Instruction Prompt
27
+
28
+ ```python
29
+ prompt = "Describe this image in detail."
30
+ ```
31
+
32
+ ### [3] Loading CoLlaVO
33
+ ```python
34
+ from collavo.load_collavo import prepare_collavo
35
+ collavo_model, collavo_processor, seg_model, seg_processor = prepare_collavo(collavo_path='BK-Lee/CoLLaVO-7B', bits=4, dtype='fp16')
36
+
37
+ ```
38
+
39
+ ### [4] Pre-processing for CoLLaVO
40
+ ```python
41
+ collavo_inputs = collavo_model.demo_process(image=image,
42
+ prompt=prompt,
43
+ processor=collavo_processor,
44
+ seg_model=seg_model,
45
+ seg_processor=seg_processor,
46
+ device='cuda:0')
47
+ ```
48
+
49
+ ### [5] Generate
50
+ ```python
51
+ import torch
52
+ with torch.inference_mode():
53
+ generate_ids = collavo_model.generate(**collavo_inputs, do_sample=True, temperature=0.9, top_p=0.95, max_new_tokens=256, use_cache=True)
54
+ ```
55
+
56
+ ### [6] Decoding
57
+ ```python
58
+ answer = collavo_processor.batch_decode(generate_ids, skip_special_tokens=True)[0].split('[U')[0]
59
+ print(answer)
60
+ ```