pszemraj commited on
Commit
b1c1ae4
1 Parent(s): 58da604

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -63
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- base_model: BEE-spoke-data/bert-plus-L8-4096-v1.0
3
  library_name: sentence-transformers
4
  pipeline_tag: sentence-similarity
5
  tags:
@@ -9,27 +9,31 @@ tags:
9
  - transformers
10
  license: apache-2.0
11
  widget:
12
- - source_sentence: "How to discreetly optimize operating expenses?"
13
- sentences:
14
- - "Strategies for quietly reducing overhead costs"
15
- - "Subtle ways to cut down on operating expenses"
16
- - "Implementing technology to save on operating costs without broad announcements"
17
- - "Lowering daily business expenses through unnoticed efficiencies"
18
- - "Minimizing operational expenditures in small businesses without drawing attention"
19
-
20
-
 
 
 
 
 
 
21
  ---
22
-
23
- # BEE-spoke-data/bert-plus-L8-v1.0-allNLI_matryoshka
24
-
25
 
26
 
27
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
28
 
29
- - this was finetuned at 512 ctx (allNLI is all short-ctx examples) but the base model supports 4096
 
30
  - Matryoshka dims: [768, 512, 256, 128, 64]
31
 
32
- <!--- Describe your model here -->
33
 
34
  ## Usage (Sentence-Transformers)
35
 
@@ -45,7 +49,7 @@ Then you can use the model like this:
45
  from sentence_transformers import SentenceTransformer
46
  sentences = ["This is an example sentence", "Each sentence is converted"]
47
 
48
- model = SentenceTransformer('BEE-spoke-data/bert-plus-L8-v1.0-allNLI_matryoshka')
49
  embeddings = model.encode(sentences)
50
  print(embeddings)
51
  ```
@@ -71,8 +75,8 @@ def mean_pooling(model_output, attention_mask):
71
  sentences = ['This is an example sentence', 'Each sentence is converted']
72
 
73
  # Load model from HuggingFace Hub
74
- tokenizer = AutoTokenizer.from_pretrained('BEE-spoke-data/bert-plus-L8-v1.0-allNLI_matryoshka')
75
- model = AutoModel.from_pretrained('BEE-spoke-data/bert-plus-L8-v1.0-allNLI_matryoshka')
76
 
77
  # Tokenize sentences
78
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -88,55 +92,13 @@ print("Sentence embeddings:")
88
  print(sentence_embeddings)
89
  ```
90
 
91
-
92
-
93
- ## Evaluation Results
94
-
95
- <!--- Describe how your model was evaluated -->
96
-
97
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=BEE-spoke-data/bert-plus-L8-v1.0-allNLI_matryoshka)
98
-
99
-
100
  ## Training
101
- The model was trained with the parameters:
102
 
103
- **DataLoader**:
104
-
105
- `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 8663 with parameters:
106
- ```
107
- {'batch_size': 32}
108
- ```
109
 
110
  **Loss**:
111
 
112
  `sentence_transformers.losses.MatryoshkaLoss.MatryoshkaLoss` with parameters:
113
  ```
114
- {'loss': 'MultipleNegativesRankingLoss', 'matryoshka_dims': [768, 512, 256, 128, 64], 'matryoshka_weights': [1, 1, 1, 1, 1], 'n_dims_per_step': -1}
115
- ```
116
-
117
- Parameters of the fit()-Method:
118
- ```
119
- {
120
- "epochs": 1,
121
- "evaluation_steps": 216,
122
- "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
123
- "max_grad_norm": 1,
124
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
125
- "optimizer_params": {
126
- "lr": 2e-05
127
- },
128
- "scheduler": "WarmupLinear",
129
- "steps_per_epoch": null,
130
- "warmup_steps": 867,
131
- "weight_decay": 0.01
132
- }
133
- ```
134
-
135
-
136
- ## Full Model Architecture
137
- ```
138
- SentenceTransformer(
139
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
140
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
141
- )
142
- ```
 
1
  ---
2
+ base_model: BEE-spoke-data/bert-plus-L8-v1.0-allNLI_matryoshka
3
  library_name: sentence-transformers
4
  pipeline_tag: sentence-similarity
5
  tags:
 
9
  - transformers
10
  license: apache-2.0
11
  widget:
12
+ - source_sentence: How to discreetly optimize operating expenses?
13
+ sentences:
14
+ - Strategies for quietly reducing overhead costs
15
+ - Subtle ways to cut down on operating expenses
16
+ - >-
17
+ Implementing technology to save on operating costs without broad
18
+ announcements
19
+ - Lowering daily business expenses through unnoticed efficiencies
20
+ - >-
21
+ Minimizing operational expenditures in small businesses without drawing
22
+ attention
23
+ datasets:
24
+ - pszemraj/synthetic-text-similarity
25
+ language:
26
+ - en
27
  ---
28
+ # BEE-spoke-data/bert-plus-L8-v1.0-synthSTSv3-4k
 
 
29
 
30
 
31
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
32
 
33
+ - This model has been further trained from [BEE-spoke-data/bert-plus-L8-v1.0-synthSTSv3-4k](https://hf.co/BEE-spoke-data/bert-plus-L8-v1.0-synthSTSv3-4k) on 'v3.0' of the `synthetic text similarity' dataset.
34
+ - Intended for use in comparing the cosine similarity of longer document embeddings and/or clustering them.
35
  - Matryoshka dims: [768, 512, 256, 128, 64]
36
 
 
37
 
38
  ## Usage (Sentence-Transformers)
39
 
 
49
  from sentence_transformers import SentenceTransformer
50
  sentences = ["This is an example sentence", "Each sentence is converted"]
51
 
52
+ model = SentenceTransformer('BEE-spoke-data/bert-plus-L8-v1.0-synthSTSv3-4k')
53
  embeddings = model.encode(sentences)
54
  print(embeddings)
55
  ```
 
75
  sentences = ['This is an example sentence', 'Each sentence is converted']
76
 
77
  # Load model from HuggingFace Hub
78
+ tokenizer = AutoTokenizer.from_pretrained('BEE-spoke-data/bert-plus-L8-v1.0-synthSTSv3-4k')
79
+ model = AutoModel.from_pretrained('BEE-spoke-data/bert-plus-L8-v1.0-synthSTSv3-4k')
80
 
81
  # Tokenize sentences
82
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
92
  print(sentence_embeddings)
93
  ```
94
 
 
 
 
 
 
 
 
 
 
95
  ## Training
 
96
 
97
+ See training details below.
 
 
 
 
 
98
 
99
  **Loss**:
100
 
101
  `sentence_transformers.losses.MatryoshkaLoss.MatryoshkaLoss` with parameters:
102
  ```
103
+ {'loss': 'CosineSimilarityLoss', 'matryoshka_dims': [768, 512, 256, 128, 64], 'matryoshka_weights': [1, 1, 1, 1, 1], 'n_dims_per_step': -1}
104
+ ```