update
Browse files
README.md
CHANGED
@@ -1,1066 +1,9 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
</a>
|
8 |
-
<a href="https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE">
|
9 |
-
<img alt="License" src="https://img.shields.io/badge/LICENSE-MIT-green">
|
10 |
-
</a>
|
11 |
-
<a href="https://huggingface.co/C-MTEB">
|
12 |
-
<img alt="Build" src="https://img.shields.io/badge/C_MTEB-🤗-yellow">
|
13 |
-
</a>
|
14 |
-
<a href="https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding">
|
15 |
-
<img alt="Build" src="https://img.shields.io/badge/FlagEmbedding-1.0-red">
|
16 |
-
</a>
|
17 |
-
</p>
|
18 |
-
|
19 |
-
<h4 align="center">
|
20 |
-
<p>
|
21 |
-
<a href=#model-list>Model List</a> |
|
22 |
-
<a href=#frequently-asked-questions>FAQ</a> |
|
23 |
-
<a href=#usage>Usage</a> |
|
24 |
-
<a href="#evaluation">Evaluation</a> |
|
25 |
-
<a href="#train">Train</a> |
|
26 |
-
<a href="#contact">Contact</a> |
|
27 |
-
<a href="#license">License</a>
|
28 |
-
<p>
|
29 |
-
</h4>
|
30 |
-
|
31 |
-
|
32 |
-
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
|
33 |
-
|
34 |
-
FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
|
35 |
-
And it also can be used in vector database for LLMs.
|
36 |
-
|
37 |
-
************* 🌟**Updates**🌟 *************
|
38 |
-
- 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [avaliable](https://huggingface.co/spaces/mteb/leaderboard).
|
39 |
-
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
|
40 |
-
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
|
41 |
-
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
|
42 |
-
|
43 |
-
|
44 |
-
## Model List
|
45 |
-
|
46 |
-
`bge` is short for `BAAI general embedding`.
|
47 |
-
|
48 |
-
| Model | Language | Description | query instruction for retrieval\* |
|
49 |
-
|:-------------------------------|:--------:| :--------:| :--------:|
|
50 |
-
| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
|
51 |
-
| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | rank **2nd** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
|
52 |
-
| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
|
53 |
-
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
|
54 |
-
| [BAAI/bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | Chinese | This model is trained without instruction, and rank **2nd** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | |
|
55 |
-
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | a base-scale model but has similar ability with `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
|
56 |
-
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
|
57 |
-
|
58 |
-
\*: If you need to search the **long** relevant passages to a **short** query (s2p retrieval task), you need to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** need to be added to passages.
|
59 |
-
|
60 |
-
## Frequently asked questions
|
61 |
-
|
62 |
-
1. The similarity score between two dissimilar sentence is higher than 0.5
|
63 |
-
|
64 |
-
The similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
|
65 |
-
So a similarity score greater than 0.5 does not indicate that the two sentence are similar.
|
66 |
-
|
67 |
-
For downstream tasks, such as passage retrieval or semantic similarity,
|
68 |
-
**what matters is the relative order of the scores, not the absolute value.**
|
69 |
-
If you need to filter similar sentences based on a similarity threshold,
|
70 |
-
please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
|
71 |
-
|
72 |
-
|
73 |
-
2. When do the query instruction need to be used
|
74 |
-
|
75 |
-
For a retrieval task that uses short queries to find long related documents,
|
76 |
-
it is recommended to add instructions for these short queries.
|
77 |
-
For other tasks, it is recommended not to add instructions.
|
78 |
-
For example, in Quora task, which needs to use a short question to search another related short questions,
|
79 |
-
the instruction is not recommended to add.
|
80 |
-
The best method to decide whether to add instructions for queries is choosing the setting which can achieve better performance in your task.
|
81 |
-
In all cases, the documents/passages do not need to add the instruction, only need to consider whether to add the instruction for queries.
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
## Usage
|
87 |
-
|
88 |
-
Here are some examples to use `bge` models with
|
89 |
-
[FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
|
90 |
-
|
91 |
-
#### Using FlagEmbedding
|
92 |
-
```
|
93 |
-
pip install -U FlagEmbedding
|
94 |
-
```
|
95 |
-
If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
|
96 |
-
|
97 |
-
```python
|
98 |
-
from FlagEmbedding import FlagModel
|
99 |
-
sentences_1 = ["样例数据-1", "样例数据-2"]
|
100 |
-
sentences_2 = ["样例数据-3", "样例数据-4"]
|
101 |
-
model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
|
102 |
-
embeddings_1 = model.encode(sentences_1)
|
103 |
-
embeddings_2 = model.encode(sentences_2)
|
104 |
-
similarity = embeddings_1 @ embeddings_2.T
|
105 |
-
print(similarity)
|
106 |
-
|
107 |
-
# for s2p(short query to long passage) retrieval task, please use encode_queries() which will automatically add the instruction to each query
|
108 |
-
# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
|
109 |
-
queries = ['query_1', 'query_2']
|
110 |
-
passages = ["样例文档-1", "样例文档-2"]
|
111 |
-
q_embeddings = model.encode_queries(queries)
|
112 |
-
p_embeddings = model.encode(passages)
|
113 |
-
scores = q_embeddings @ p_embeddings.T
|
114 |
-
```
|
115 |
-
The value of argument `query_instruction_for_retrieval` see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
|
116 |
-
|
117 |
-
FlagModel will use all available GPUs when encoding, please set `os.environ["CUDA_VISIBLE_DEVICES"]` to choose GPU.
|
118 |
-
You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make GPUs unavailable.
|
119 |
-
|
120 |
-
|
121 |
-
#### Using Sentence-Transformers
|
122 |
-
|
123 |
-
Using this model also is easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
124 |
-
|
125 |
-
```
|
126 |
-
pip install -U sentence-transformers
|
127 |
-
```
|
128 |
-
```python
|
129 |
-
from sentence_transformers import SentenceTransformer
|
130 |
-
sentences_1 = ["样例数据-1", "样例数据-2"]
|
131 |
-
sentences_2 = ["样例数据-3", "样例数据-4"]
|
132 |
-
model = SentenceTransformer('BAAI/bge-large-zh')
|
133 |
-
embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
|
134 |
-
embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
|
135 |
-
similarity = embeddings_1 @ embeddings_2.T
|
136 |
-
print(similarity)
|
137 |
-
```
|
138 |
-
For s2p(short query to long passage) retrieval task,
|
139 |
-
each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
|
140 |
-
But the instruction is not needed for passages.
|
141 |
-
```python
|
142 |
-
from sentence_transformers import SentenceTransformer
|
143 |
-
queries = ['query_1', 'query_2']
|
144 |
-
passages = ["样例文档-1", "样例文档-2"]
|
145 |
-
instruction = "为这个句子生成表示以用于检索相关文章:"
|
146 |
-
|
147 |
-
model = SentenceTransformer('BAAI/bge-large-zh')
|
148 |
-
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
|
149 |
-
p_embeddings = model.encode(passages, normalize_embeddings=True)
|
150 |
-
scores = q_embeddings @ p_embeddings.T
|
151 |
-
```
|
152 |
-
|
153 |
-
#### Using Langchain
|
154 |
-
|
155 |
-
You can use `bge` in langchain like this:
|
156 |
-
```python
|
157 |
-
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
158 |
-
model_name = "BAAI/bge-small-en"
|
159 |
-
model_kwargs = {'device': 'cuda'}
|
160 |
-
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
|
161 |
-
model = HuggingFaceBgeEmbeddings(
|
162 |
-
model_name=model_name,
|
163 |
-
model_kwargs=model_kwargs,
|
164 |
-
encode_kwargs=encode_kwargs,
|
165 |
-
query_instruction="为这个句子生成表示以用于检索相关文章:"
|
166 |
-
)
|
167 |
-
```
|
168 |
-
|
169 |
-
|
170 |
-
#### Using HuggingFace Transformers
|
171 |
-
|
172 |
-
With transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of first token (i.e., [CLS]) as the sentence embedding.
|
173 |
-
|
174 |
-
```python
|
175 |
-
from transformers import AutoTokenizer, AutoModel
|
176 |
-
import torch
|
177 |
-
# Sentences we want sentence embeddings for
|
178 |
-
sentences = ["样例数据-1", "样例数据-2"]
|
179 |
-
|
180 |
-
# Load model from HuggingFace Hub
|
181 |
-
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh')
|
182 |
-
model = AutoModel.from_pretrained('BAAI/bge-large-zh')
|
183 |
-
|
184 |
-
# Tokenize sentences
|
185 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
186 |
-
# for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
|
187 |
-
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
|
188 |
-
|
189 |
-
# Compute token embeddings
|
190 |
-
with torch.no_grad():
|
191 |
-
model_output = model(**encoded_input)
|
192 |
-
# Perform pooling. In this case, cls pooling.
|
193 |
-
sentence_embeddings = model_output[0][:, 0]
|
194 |
-
# normalize embeddings
|
195 |
-
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
|
196 |
-
print("Sentence embeddings:", sentence_embeddings)
|
197 |
-
```
|
198 |
-
|
199 |
-
|
200 |
-
## Evaluation
|
201 |
-
`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
|
202 |
-
More details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
|
203 |
-
|
204 |
-
- **MTEB**:
|
205 |
-
|
206 |
-
| Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
|
207 |
-
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
208 |
-
| [**bge-large-en**](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | **63.98** | **53.9** | **46.98** | 85.8 | **59.48** | 81.56 | 32.06 | **76.21** |
|
209 |
-
| [**bge-base-en**](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
|
210 |
-
| [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
|
211 |
-
| [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
|
212 |
-
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
|
213 |
-
| [**bge-small-en**](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
|
214 |
-
| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
|
215 |
-
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
|
216 |
-
| [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
|
217 |
-
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 |
|
218 |
-
| [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 |
|
219 |
-
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
|
220 |
-
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
|
221 |
-
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
|
222 |
-
| [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) | 384 | 512 | 56.53 | 42.69 | 41.81 | 82.41 | 58.44 | 79.8 | 27.9 | 63.21 |
|
223 |
-
| [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | 384 | 512 | 56.26 | 41.95 | 42.35 | 82.37 | 58.04 | 78.9 | 30.81 | 63.05 |
|
224 |
-
| [contriever-base-msmarco](https://huggingface.co/nthakur/contriever-base-msmarco) | 768 | 512 | 56.00 | 41.88 | 41.1 | 82.54 | 53.14 | 76.51 | 30.36 | 66.68 |
|
225 |
-
| [sentence-t5-base](https://huggingface.co/sentence-transformers/sentence-t5-base) | 768 | 512 | 55.27 | 33.63 | 40.21 | 85.18 | 53.09 | 81.14 | 31.39 | 69.81 |
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
- **C-MTEB**:
|
230 |
-
We create a benchmark C-MTEB for chinese text embedding which consists of 31 datasets from 6 tasks.
|
231 |
-
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
|
232 |
-
|
233 |
-
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|
234 |
-
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
235 |
-
| [**bge-large-zh**](https://huggingface.co/BAAI/bge-large-zh) | 1024 | **64.20** | **71.53** | **53.23** | **78.94** | 72.26 | **65.11** | 48.39 |
|
236 |
-
| [**bge-large-zh-noinstruct**](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 50.98 | 76.77 | **72.49** | 64.91 | **50.01** |
|
237 |
-
| [**BAAI/bge-base-zh**](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 52.05 | 77.5 | 70.98 | 64.91 | 47.63 |
|
238 |
-
| [**BAAI/bge-small-zh**](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 46.87 | 70.35 | 67.78 | 61.48 | 45.09 |
|
239 |
-
| [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 |56.91 | 48.15 | 63.99 | 70.28 | 59.34 | 47.68 |
|
240 |
-
| [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 |54.75 | 48.64 | 64.3 | 71.22 | 59.66 | 48.88 |
|
241 |
-
| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 40.61 | 69.56 | 67.38 | 54.28 | 45.68 |
|
242 |
-
| [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 39.41 | 66.62 | 65.29 | 49.25 | 44.39 |
|
243 |
-
| [text2vec](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 41.71 | 67.41 | 65.18 | 49.45 | 37.66 |
|
244 |
-
| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 41.98 | 70.86 | 63.42 | 49.16 | 30.02 |
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
## Train
|
249 |
-
This section will introduce the way we used to train the general embedding.
|
250 |
-
The training scripts are in [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md),
|
251 |
-
and we provide some examples to do [pre-train](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/pretrain/README.md) and [fine-tune](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/finetune/README.md).
|
252 |
-
|
253 |
-
|
254 |
-
**1. RetroMAE Pre-train**
|
255 |
-
We pre-train the model following the method [retromae](https://github.com/staoxiao/RetroMAE),
|
256 |
-
which shows promising improvement in retrieval task ([paper](https://aclanthology.org/2022.emnlp-main.35.pdf)).
|
257 |
-
The pre-training was conducted on 24 A100(40G) GPUs with a batch size of 720.
|
258 |
-
In retromae, the mask ratio of encoder and decoder are 0.3, 0.5 respectively.
|
259 |
-
We used the AdamW optimizer and the learning rate is 2e-5.
|
260 |
-
|
261 |
-
**Pre-training data**:
|
262 |
-
- English:
|
263 |
-
- [Pile](https://pile.eleuther.ai/)
|
264 |
-
- [wikipedia](https://huggingface.co/datasets/wikipedia)
|
265 |
-
- [msmarco](https://huggingface.co/datasets/Tevatron/msmarco-passage-corpus)
|
266 |
-
- Chinese:
|
267 |
-
- [wudao](https://github.com/BAAI-WuDao/Data)
|
268 |
-
|
269 |
-
|
270 |
-
**2. Finetune**
|
271 |
-
We fine-tune the model using a contrastive objective.
|
272 |
-
The format of input data is a triple`(query, positive, negative)`.
|
273 |
-
Besides the negative in the triple, we also adopt in-batch negatives strategy.
|
274 |
-
We employ the cross-device negatives sharing method to share negatives among different GPUs,
|
275 |
-
which can dramatically **increase the number of negatives**.
|
276 |
-
|
277 |
-
We trained our model on 48 A100(40G) GPUs with a large batch size of 32,784 (so there are **65,567** negatives for each query in a batch).
|
278 |
-
We used the AdamW optimizer and the learning rate is 1e-5.
|
279 |
-
The temperature for contrastive loss is 0.01.
|
280 |
-
|
281 |
-
Besides, we add instruction to the query for s2p(short query to long passage) retrieval task in the training (add nothing to passages).
|
282 |
-
For English, the instruction is `Represent this sentence for searching relevant passages: `;
|
283 |
-
For Chinese, the instruction is `为这个句子生成表示以用于检索相关文章:`.
|
284 |
-
In the evaluation, the instruction should be added for queries in retrieval task, not be added for other tasks.
|
285 |
-
Noted that the instruction is not needed for passages.
|
286 |
-
|
287 |
-
The finetune script is accessible in this repository: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
|
288 |
-
You can easily finetune your model with it.
|
289 |
-
|
290 |
-
**Training data**:
|
291 |
-
|
292 |
-
- For English, we collect 230M text pairs from [wikipedia](https://huggingface.co/datasets/wikipedia), [cc-net](https://github.com/facebookresearch/cc_net), and so on.
|
293 |
-
|
294 |
-
- For chinese, we collect 120M text pairs from [wudao](https://github.com/BAAI-WuDao/Data), [simclue](https://github.com/CLUEbenchmark/SimCLUE), and so on.
|
295 |
-
|
296 |
-
**The data collection is to be released in the future.**
|
297 |
-
|
298 |
-
|
299 |
-
## Schedule
|
300 |
-
- [x] Chinese Massive Text Embedding Benchmark
|
301 |
-
- [x] release baai-general-embedding models
|
302 |
-
- [x] release codes for training
|
303 |
-
- [ ] Multilingual model
|
304 |
-
- [ ] Training Datasets
|
305 |
-
- [ ] ...
|
306 |
-
|
307 |
-
We will continually update the embedding models and training codes,
|
308 |
-
hoping to promote the development of the embedding model community.
|
309 |
-
|
310 |
-
|
311 |
-
## Contact
|
312 |
-
If you have any question or suggestion related to this project, feel free to open an issue or pull a request.
|
313 |
-
You also can email Shitao Xiao(stxiao@baai.ac.cn) and Zheng Liu(liuzheng@baai.ac.cn).
|
314 |
-
|
315 |
-
|
316 |
-
## License
|
317 |
-
FlagEmbedding is licensed under [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
<h1 align="center">FlagEmbedding</h1>
|
324 |
-
|
325 |
-
|
326 |
-
<h4 align="center">
|
327 |
-
<p>
|
328 |
-
<a href=#model-list>Model List</a> |
|
329 |
-
<a href=#usage>Usage</a> |
|
330 |
-
<a href="#evaluation">Evaluation</a> |
|
331 |
-
<a href="#train">Train</a> |
|
332 |
-
<a href="#contact">Contact</a> |
|
333 |
-
<a href="#license">License</a>
|
334 |
-
<p>
|
335 |
-
</h4>
|
336 |
-
|
337 |
-
More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
|
342 |
-
|
343 |
-
FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
|
344 |
-
And it also can be used in vector databases for LLMs.
|
345 |
-
|
346 |
-
************* 🌟**Updates**🌟 *************
|
347 |
-
- 09/12/2023: New Release:
|
348 |
-
- **New reranker model**: release a cross-encoder model bge-reranker-base, which is more powerful than embedding model. We recommend to use/fine-tune it to re-rank top-k documents returned by embedding models.
|
349 |
-
- **update embedding model**: release bge-*-v1.5 embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
|
350 |
-
- 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning.
|
351 |
-
- 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).
|
352 |
-
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
|
353 |
-
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
|
354 |
-
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
|
355 |
-
|
356 |
-
|
357 |
-
## Model List
|
358 |
-
|
359 |
-
`bge` is short for `BAAI general embedding`.
|
360 |
-
|
361 |
-
| Model | Language | | Description | query instruction for retrieval\* |
|
362 |
-
|:-------------------------------|:--------:| :--------:| :--------:|:--------:|
|
363 |
-
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | |
|
364 |
-
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | |
|
365 |
-
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
366 |
-
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
367 |
-
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
368 |
-
| [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
369 |
-
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
370 |
-
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
371 |
-
| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
|
372 |
-
| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` |
|
373 |
-
| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
|
374 |
-
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
|
375 |
-
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
|
376 |
-
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
|
377 |
-
|
378 |
-
|
379 |
-
\*: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
|
380 |
-
|
381 |
-
\**: To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models.
|
382 |
-
For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.
|
383 |
-
|
384 |
-
|
385 |
-
## Frequently asked questions
|
386 |
-
|
387 |
-
<details>
|
388 |
-
<summary>1. How to fine-tune bge embedding model?</summary>
|
389 |
-
|
390 |
-
<!-- ### How to fine-tune bge embedding model? -->
|
391 |
-
Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model.
|
392 |
-
Some suggestions:
|
393 |
-
- Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#data-format), which can improve the retrieval performance.
|
394 |
-
- If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
|
395 |
-
- If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker.
|
396 |
-
|
397 |
-
|
398 |
-
</details>
|
399 |
-
|
400 |
-
<details>
|
401 |
-
<summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary>
|
402 |
-
|
403 |
-
<!-- ### The similarity score between two dissimilar sentences is higher than 0.5 -->
|
404 |
-
**Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.**
|
405 |
-
|
406 |
-
Since we finetune the models by contrastive learning with a temperature of 0.01,
|
407 |
-
the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
|
408 |
-
So a similarity score greater than 0.5 does not indicate that the two sentences are similar.
|
409 |
-
|
410 |
-
For downstream tasks, such as passage retrieval or semantic similarity,
|
411 |
-
**what matters is the relative order of the scores, not the absolute value.**
|
412 |
-
If you need to filter similar sentences based on a similarity threshold,
|
413 |
-
please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
|
414 |
-
|
415 |
-
</details>
|
416 |
-
|
417 |
-
<details>
|
418 |
-
<summary>3. When does the query instruction need to be used</summary>
|
419 |
-
|
420 |
-
<!-- ### When does the query instruction need to be used -->
|
421 |
-
|
422 |
-
For a retrieval task that uses short queries to find long related documents,
|
423 |
-
it is recommended to add instructions for these short queries.
|
424 |
-
**The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
|
425 |
-
In all cases, the documents/passages do not need to add the instruction.
|
426 |
-
|
427 |
-
</details>
|
428 |
-
|
429 |
-
|
430 |
-
## Usage
|
431 |
-
|
432 |
-
### Usage for Embedding Model
|
433 |
-
|
434 |
-
Here are some examples for using `bge` models with
|
435 |
-
[FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
|
436 |
-
|
437 |
-
#### Using FlagEmbedding
|
438 |
-
```
|
439 |
-
pip install -U FlagEmbedding
|
440 |
-
```
|
441 |
-
If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
|
442 |
-
|
443 |
-
```python
|
444 |
-
from FlagEmbedding import FlagModel
|
445 |
-
sentences_1 = ["样例数据-1", "样例数据-2"]
|
446 |
-
sentences_2 = ["样例数据-3", "样例数据-4"]
|
447 |
-
model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
|
448 |
-
embeddings_1 = model.encode(sentences_1)
|
449 |
-
embeddings_2 = model.encode(sentences_2)
|
450 |
-
similarity = embeddings_1 @ embeddings_2.T
|
451 |
-
print(similarity)
|
452 |
-
|
453 |
-
# for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query
|
454 |
-
# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
|
455 |
-
queries = ['query_1', 'query_2']
|
456 |
-
passages = ["样例文档-1", "样例文档-2"]
|
457 |
-
q_embeddings = model.encode_queries(queries)
|
458 |
-
p_embeddings = model.encode(passages)
|
459 |
-
scores = q_embeddings @ p_embeddings.T
|
460 |
-
```
|
461 |
-
For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
|
462 |
-
|
463 |
-
By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
|
464 |
-
You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
|
465 |
-
|
466 |
-
|
467 |
-
#### Using Sentence-Transformers
|
468 |
-
|
469 |
-
You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net):
|
470 |
-
|
471 |
-
```
|
472 |
-
pip install -U sentence-transformers
|
473 |
-
```
|
474 |
-
```python
|
475 |
-
from sentence_transformers import SentenceTransformer
|
476 |
-
sentences_1 = ["样例数据-1", "样例数据-2"]
|
477 |
-
sentences_2 = ["样例数据-3", "样例数据-4"]
|
478 |
-
model = SentenceTransformer('BAAI/bge-large-zh')
|
479 |
-
embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
|
480 |
-
embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
|
481 |
-
similarity = embeddings_1 @ embeddings_2.T
|
482 |
-
print(similarity)
|
483 |
-
```
|
484 |
-
For s2p(short query to long passage) retrieval task,
|
485 |
-
each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
|
486 |
-
But the instruction is not needed for passages.
|
487 |
-
```python
|
488 |
-
from sentence_transformers import SentenceTransformer
|
489 |
-
queries = ['query_1', 'query_2']
|
490 |
-
passages = ["样例文档-1", "样例文档-2"]
|
491 |
-
instruction = "为这个句子生成表示以用于检索相关文章:"
|
492 |
-
|
493 |
-
model = SentenceTransformer('BAAI/bge-large-zh')
|
494 |
-
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
|
495 |
-
p_embeddings = model.encode(passages, normalize_embeddings=True)
|
496 |
-
scores = q_embeddings @ p_embeddings.T
|
497 |
-
```
|
498 |
-
|
499 |
-
#### Using Langchain
|
500 |
-
|
501 |
-
You can use `bge` in langchain like this:
|
502 |
-
```python
|
503 |
-
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
504 |
-
model_name = "BAAI/bge-small-en"
|
505 |
-
model_kwargs = {'device': 'cuda'}
|
506 |
-
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
|
507 |
-
model = HuggingFaceBgeEmbeddings(
|
508 |
-
model_name=model_name,
|
509 |
-
model_kwargs=model_kwargs,
|
510 |
-
encode_kwargs=encode_kwargs,
|
511 |
-
query_instruction="为这个句子生成表示以用于检索相关文章:"
|
512 |
-
)
|
513 |
-
model.query_instruction = "为这个句子生成表示以用于检索相关文章:"
|
514 |
-
```
|
515 |
-
|
516 |
-
|
517 |
-
#### Using HuggingFace Transformers
|
518 |
-
|
519 |
-
With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding.
|
520 |
-
|
521 |
-
```python
|
522 |
-
from transformers import AutoTokenizer, AutoModel
|
523 |
-
import torch
|
524 |
-
# Sentences we want sentence embeddings for
|
525 |
-
sentences = ["样例数据-1", "样例数据-2"]
|
526 |
-
|
527 |
-
# Load model from HuggingFace Hub
|
528 |
-
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh')
|
529 |
-
model = AutoModel.from_pretrained('BAAI/bge-large-zh')
|
530 |
-
model.eval()
|
531 |
-
|
532 |
-
# Tokenize sentences
|
533 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
534 |
-
# for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
|
535 |
-
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
|
536 |
-
|
537 |
-
# Compute token embeddings
|
538 |
-
with torch.no_grad():
|
539 |
-
model_output = model(**encoded_input)
|
540 |
-
# Perform pooling. In this case, cls pooling.
|
541 |
-
sentence_embeddings = model_output[0][:, 0]
|
542 |
-
# normalize embeddings
|
543 |
-
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
|
544 |
-
print("Sentence embeddings:", sentence_embeddings)
|
545 |
-
```
|
546 |
-
|
547 |
-
### Usage for Reranker
|
548 |
-
|
549 |
-
You can get a relevance score by inputting query and passage to the reranker.
|
550 |
-
The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
|
551 |
-
|
552 |
-
|
553 |
-
#### Using FlagEmbedding
|
554 |
-
```
|
555 |
-
pip install -U FlagEmbedding
|
556 |
-
```
|
557 |
-
|
558 |
-
Get relevance score:
|
559 |
-
```python
|
560 |
-
from FlagEmbedding import FlagReranker
|
561 |
-
reranker = FlagReranker('BAAI/bge-reranker-base', use_fp16=True) #use fp16 can speed up computing
|
562 |
-
|
563 |
-
score = reranker.compute_score(['query', 'passage'])
|
564 |
-
print(score)
|
565 |
-
|
566 |
-
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
|
567 |
-
print(scores)
|
568 |
-
```
|
569 |
-
|
570 |
-
|
571 |
-
#### Using Huggingface transformers
|
572 |
-
|
573 |
-
```python
|
574 |
-
import torch
|
575 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer, BatchEncoding, PreTrainedTokenizerFast
|
576 |
-
|
577 |
-
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-base')
|
578 |
-
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-base')
|
579 |
-
model.eval()
|
580 |
-
|
581 |
-
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
|
582 |
-
with torch.no_grad():
|
583 |
-
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
|
584 |
-
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
|
585 |
-
print(scores)
|
586 |
-
```
|
587 |
-
|
588 |
-
## Evaluation
|
589 |
-
|
590 |
-
`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
|
591 |
-
For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
|
592 |
-
|
593 |
-
- **MTEB**:
|
594 |
-
|
595 |
-
| Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
|
596 |
-
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
597 |
-
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 |
|
598 |
-
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 |
|
599 |
-
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 |
|
600 |
-
| [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 |
|
601 |
-
| [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
|
602 |
-
| [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
|
603 |
-
| [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
|
604 |
-
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
|
605 |
-
| [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
|
606 |
-
| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
|
607 |
-
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
|
608 |
-
| [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
|
609 |
-
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 |
|
610 |
-
| [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 |
|
611 |
-
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
|
612 |
-
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
|
613 |
-
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
- **C-MTEB**:
|
618 |
-
We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
|
619 |
-
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
|
620 |
-
|
621 |
-
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|
622 |
-
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
623 |
-
| [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 |
|
624 |
-
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 |
|
625 |
-
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 |
|
626 |
-
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 |
|
627 |
-
| [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 |
|
628 |
-
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 |
|
629 |
-
| [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 |
|
630 |
-
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 |
|
631 |
-
| [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 |
|
632 |
-
| [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 |
|
633 |
-
| [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 |
|
634 |
-
| [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 |
|
635 |
-
| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 |
|
636 |
-
| [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 |
|
637 |
-
| [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 |
|
638 |
-
| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 |
|
639 |
-
|
640 |
-
|
641 |
-
- **Reranking**:
|
642 |
-
See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
|
643 |
-
|
644 |
-
| Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MmarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
|
645 |
-
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
646 |
-
| text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
|
647 |
-
| multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
|
648 |
-
| multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 |
|
649 |
-
| multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 |
|
650 |
-
| m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 |
|
651 |
-
| m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 |
|
652 |
-
| bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 |
|
653 |
-
| bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 |
|
654 |
-
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
|
655 |
-
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
|
656 |
-
|
657 |
-
\* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval task
|
658 |
-
|
659 |
-
## Train
|
660 |
-
|
661 |
-
### BAAI Embedding
|
662 |
-
|
663 |
-
We pre-train the models using retromae and train them on large-scale pairs data using contrastive learning.
|
664 |
-
**You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
|
665 |
-
We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
|
666 |
-
Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
|
667 |
-
More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
### BGE Reranker
|
672 |
-
|
673 |
-
Cross-encoder will perform full-attention over the input pair,
|
674 |
-
which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model.
|
675 |
-
Therefore, it can be used to re-rank the top-k documents returned by embedding model.
|
676 |
-
We train the cross-encoder on a multilingual pair data,
|
677 |
-
The data format is the same as embedding model, so you can fine-tune it easily following our example.
|
678 |
-
More details pelease refer to [./FlagEmbedding/reranker/README.md](./FlagEmbedding/reranker/README.md)
|
679 |
-
|
680 |
-
|
681 |
-
## Contact
|
682 |
-
If you have any question or suggestion related to this project, feel free to open an issue or pull request.
|
683 |
-
You also can email Shitao Xiao(stxiao@baai.ac.cn) and Zheng Liu(liuzheng@baai.ac.cn).
|
684 |
-
|
685 |
-
|
686 |
-
## License
|
687 |
-
FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
**Recommend switching to newest bge-small-zh-v1.5, which has more reasonable similarity distribution and same method of usage.**
|
694 |
-
|
695 |
-
<h1 align="center">FlagEmbedding</h1>
|
696 |
-
|
697 |
-
|
698 |
-
<h4 align="center">
|
699 |
-
<p>
|
700 |
-
<a href=#model-list>Model List</a> |
|
701 |
-
<a href=#frequently-asked-questions>FAQ</a> |
|
702 |
-
<a href=#usage>Usage</a> |
|
703 |
-
<a href="#evaluation">Evaluation</a> |
|
704 |
-
<a href="#train">Train</a> |
|
705 |
-
<a href="#contact">Contact</a> |
|
706 |
-
<a href="#license">License</a>
|
707 |
-
<p>
|
708 |
-
</h4>
|
709 |
-
|
710 |
-
More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
|
715 |
-
|
716 |
-
FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
|
717 |
-
And it also can be used in vector databases for LLMs.
|
718 |
-
|
719 |
-
************* 🌟**Updates**🌟 *************
|
720 |
-
- 09/12/2023: New Release:
|
721 |
-
- **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models.
|
722 |
-
- **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
|
723 |
-
- 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning.
|
724 |
-
- 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).
|
725 |
-
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
|
726 |
-
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
|
727 |
-
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
|
728 |
-
|
729 |
-
|
730 |
-
## Model List
|
731 |
-
|
732 |
-
`bge` is short for `BAAI general embedding`.
|
733 |
-
|
734 |
-
| Model | Language | | Description | query instruction for retrieval\* |
|
735 |
-
|:-------------------------------|:--------:| :--------:| :--------:|:--------:|
|
736 |
-
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | |
|
737 |
-
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | |
|
738 |
-
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
739 |
-
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
740 |
-
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
741 |
-
| [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
742 |
-
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
743 |
-
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
744 |
-
| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
|
745 |
-
| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` |
|
746 |
-
| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
|
747 |
-
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
|
748 |
-
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
|
749 |
-
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
|
750 |
-
|
751 |
-
|
752 |
-
\*: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
|
753 |
-
|
754 |
-
\**: Different embedding model, reranker is a cross-encoder, which cannot be used to generate embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models.
|
755 |
-
For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.
|
756 |
-
|
757 |
-
|
758 |
-
## Frequently asked questions
|
759 |
-
|
760 |
-
<details>
|
761 |
-
<summary>1. How to fine-tune bge embedding model?</summary>
|
762 |
-
|
763 |
-
<!-- ### How to fine-tune bge embedding model? -->
|
764 |
-
Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model.
|
765 |
-
Some suggestions:
|
766 |
-
- Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance.
|
767 |
-
- If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
|
768 |
-
- If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker.
|
769 |
-
|
770 |
-
|
771 |
-
</details>
|
772 |
-
|
773 |
-
<details>
|
774 |
-
<summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary>
|
775 |
-
|
776 |
-
<!-- ### The similarity score between two dissimilar sentences is higher than 0.5 -->
|
777 |
-
**Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.**
|
778 |
-
|
779 |
-
Since we finetune the models by contrastive learning with a temperature of 0.01,
|
780 |
-
the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
|
781 |
-
So a similarity score greater than 0.5 does not indicate that the two sentences are similar.
|
782 |
-
|
783 |
-
For downstream tasks, such as passage retrieval or semantic similarity,
|
784 |
-
**what matters is the relative order of the scores, not the absolute value.**
|
785 |
-
If you need to filter similar sentences based on a similarity threshold,
|
786 |
-
please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
|
787 |
-
|
788 |
-
</details>
|
789 |
-
|
790 |
-
<details>
|
791 |
-
<summary>3. When does the query instruction need to be used</summary>
|
792 |
-
|
793 |
-
<!-- ### When does the query instruction need to be used -->
|
794 |
-
|
795 |
-
For a retrieval task that uses short queries to find long related documents,
|
796 |
-
it is recommended to add instructions for these short queries.
|
797 |
-
**The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
|
798 |
-
In all cases, the documents/passages do not need to add the instruction.
|
799 |
-
|
800 |
-
</details>
|
801 |
-
|
802 |
-
|
803 |
-
## Usage
|
804 |
-
|
805 |
-
### Usage for Embedding Model
|
806 |
-
|
807 |
-
Here are some examples for using `bge` models with
|
808 |
-
[FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
|
809 |
-
|
810 |
-
#### Using FlagEmbedding
|
811 |
-
```
|
812 |
-
pip install -U FlagEmbedding
|
813 |
-
```
|
814 |
-
If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
|
815 |
-
|
816 |
-
```python
|
817 |
-
from FlagEmbedding import FlagModel
|
818 |
-
sentences_1 = ["样例数据-1", "样例数据-2"]
|
819 |
-
sentences_2 = ["样例数据-3", "样例数据-4"]
|
820 |
-
model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
|
821 |
-
embeddings_1 = model.encode(sentences_1)
|
822 |
-
embeddings_2 = model.encode(sentences_2)
|
823 |
-
similarity = embeddings_1 @ embeddings_2.T
|
824 |
-
print(similarity)
|
825 |
-
|
826 |
-
# for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query
|
827 |
-
# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
|
828 |
-
queries = ['query_1', 'query_2']
|
829 |
-
passages = ["样例文档-1", "样例文档-2"]
|
830 |
-
q_embeddings = model.encode_queries(queries)
|
831 |
-
p_embeddings = model.encode(passages)
|
832 |
-
scores = q_embeddings @ p_embeddings.T
|
833 |
-
```
|
834 |
-
For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
|
835 |
-
|
836 |
-
By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
|
837 |
-
You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
|
838 |
-
|
839 |
-
|
840 |
-
#### Using Sentence-Transformers
|
841 |
-
|
842 |
-
You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net):
|
843 |
-
|
844 |
-
```
|
845 |
-
pip install -U sentence-transformers
|
846 |
-
```
|
847 |
-
```python
|
848 |
-
from sentence_transformers import SentenceTransformer
|
849 |
-
sentences_1 = ["样例数据-1", "样例数据-2"]
|
850 |
-
sentences_2 = ["样例数据-3", "样例数据-4"]
|
851 |
-
model = SentenceTransformer('BAAI/bge-large-zh')
|
852 |
-
embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
|
853 |
-
embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
|
854 |
-
similarity = embeddings_1 @ embeddings_2.T
|
855 |
-
print(similarity)
|
856 |
-
```
|
857 |
-
For s2p(short query to long passage) retrieval task,
|
858 |
-
each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
|
859 |
-
But the instruction is not needed for passages.
|
860 |
-
```python
|
861 |
-
from sentence_transformers import SentenceTransformer
|
862 |
-
queries = ['query_1', 'query_2']
|
863 |
-
passages = ["样例文档-1", "样例文档-2"]
|
864 |
-
instruction = "为这个句子生成表示以用于检索相关文章:"
|
865 |
-
|
866 |
-
model = SentenceTransformer('BAAI/bge-large-zh')
|
867 |
-
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
|
868 |
-
p_embeddings = model.encode(passages, normalize_embeddings=True)
|
869 |
-
scores = q_embeddings @ p_embeddings.T
|
870 |
-
```
|
871 |
-
|
872 |
-
#### Using Langchain
|
873 |
-
|
874 |
-
You can use `bge` in langchain like this:
|
875 |
-
```python
|
876 |
-
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
877 |
-
model_name = "BAAI/bge-small-en"
|
878 |
-
model_kwargs = {'device': 'cuda'}
|
879 |
-
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
|
880 |
-
model = HuggingFaceBgeEmbeddings(
|
881 |
-
model_name=model_name,
|
882 |
-
model_kwargs=model_kwargs,
|
883 |
-
encode_kwargs=encode_kwargs,
|
884 |
-
query_instruction="为这个句子生成表示以用于检索相关文章:"
|
885 |
-
)
|
886 |
-
model.query_instruction = "为这个句子生成表示以用于检索相关文章:"
|
887 |
-
```
|
888 |
-
|
889 |
-
|
890 |
-
#### Using HuggingFace Transformers
|
891 |
-
|
892 |
-
With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding.
|
893 |
-
|
894 |
-
```python
|
895 |
-
from transformers import AutoTokenizer, AutoModel
|
896 |
-
import torch
|
897 |
-
# Sentences we want sentence embeddings for
|
898 |
-
sentences = ["样例数据-1", "样例数据-2"]
|
899 |
-
|
900 |
-
# Load model from HuggingFace Hub
|
901 |
-
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh')
|
902 |
-
model = AutoModel.from_pretrained('BAAI/bge-large-zh')
|
903 |
-
model.eval()
|
904 |
-
|
905 |
-
# Tokenize sentences
|
906 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
907 |
-
# for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
|
908 |
-
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
|
909 |
-
|
910 |
-
# Compute token embeddings
|
911 |
-
with torch.no_grad():
|
912 |
-
model_output = model(**encoded_input)
|
913 |
-
# Perform pooling. In this case, cls pooling.
|
914 |
-
sentence_embeddings = model_output[0][:, 0]
|
915 |
-
# normalize embeddings
|
916 |
-
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
|
917 |
-
print("Sentence embeddings:", sentence_embeddings)
|
918 |
-
```
|
919 |
-
|
920 |
-
### Usage for Reranker
|
921 |
-
|
922 |
-
You can get a relevance score by inputting query and passage to the reranker.
|
923 |
-
The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
|
924 |
-
|
925 |
-
|
926 |
-
#### Using FlagEmbedding
|
927 |
-
```
|
928 |
-
pip install -U FlagEmbedding
|
929 |
-
```
|
930 |
-
|
931 |
-
Get relevance score:
|
932 |
-
```python
|
933 |
-
from FlagEmbedding import FlagReranker
|
934 |
-
reranker = FlagReranker('BAAI/bge-reranker-base', use_fp16=True) #use fp16 can speed up computing
|
935 |
-
|
936 |
-
score = reranker.compute_score(['query', 'passage'])
|
937 |
-
print(score)
|
938 |
-
|
939 |
-
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
|
940 |
-
print(scores)
|
941 |
-
```
|
942 |
-
|
943 |
-
|
944 |
-
#### Using Huggingface transformers
|
945 |
-
|
946 |
-
```python
|
947 |
-
import torch
|
948 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer, BatchEncoding, PreTrainedTokenizerFast
|
949 |
-
|
950 |
-
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-base')
|
951 |
-
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-base')
|
952 |
-
model.eval()
|
953 |
-
|
954 |
-
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
|
955 |
-
with torch.no_grad():
|
956 |
-
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
|
957 |
-
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
|
958 |
-
print(scores)
|
959 |
-
```
|
960 |
-
|
961 |
-
## Evaluation
|
962 |
-
|
963 |
-
`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
|
964 |
-
For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
|
965 |
-
|
966 |
-
- **MTEB**:
|
967 |
-
|
968 |
-
| Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
|
969 |
-
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
970 |
-
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 |
|
971 |
-
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 |
|
972 |
-
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 |
|
973 |
-
| [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 |
|
974 |
-
| [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
|
975 |
-
| [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
|
976 |
-
| [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
|
977 |
-
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
|
978 |
-
| [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
|
979 |
-
| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
|
980 |
-
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
|
981 |
-
| [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
|
982 |
-
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 |
|
983 |
-
| [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 |
|
984 |
-
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
|
985 |
-
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
|
986 |
-
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
|
987 |
-
|
988 |
-
|
989 |
-
|
990 |
-
- **C-MTEB**:
|
991 |
-
We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
|
992 |
-
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
|
993 |
-
|
994 |
-
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|
995 |
-
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
996 |
-
| [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 |
|
997 |
-
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 |
|
998 |
-
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 |
|
999 |
-
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 |
|
1000 |
-
| [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 |
|
1001 |
-
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 |
|
1002 |
-
| [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 |
|
1003 |
-
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 |
|
1004 |
-
| [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 |
|
1005 |
-
| [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 |
|
1006 |
-
| [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 |
|
1007 |
-
| [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 |
|
1008 |
-
| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 |
|
1009 |
-
| [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 |
|
1010 |
-
| [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 |
|
1011 |
-
| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 |
|
1012 |
-
|
1013 |
-
|
1014 |
-
- **Reranking**:
|
1015 |
-
See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
|
1016 |
-
|
1017 |
-
| Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MmarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
|
1018 |
-
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
1019 |
-
| text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
|
1020 |
-
| multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
|
1021 |
-
| multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 |
|
1022 |
-
| multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 |
|
1023 |
-
| m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 |
|
1024 |
-
| m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 |
|
1025 |
-
| bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 |
|
1026 |
-
| bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 |
|
1027 |
-
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
|
1028 |
-
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
|
1029 |
-
|
1030 |
-
\* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval task
|
1031 |
-
|
1032 |
-
## Train
|
1033 |
-
|
1034 |
-
### BAAI Embedding
|
1035 |
-
|
1036 |
-
We pre-train the models using retromae and train them on large-scale pairs data using contrastive learning.
|
1037 |
-
**You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
|
1038 |
-
We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
|
1039 |
-
Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
|
1040 |
-
More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
|
1041 |
-
|
1042 |
-
|
1043 |
-
|
1044 |
-
### BGE Reranker
|
1045 |
-
|
1046 |
-
Cross-encoder will perform full-attention over the input pair,
|
1047 |
-
which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model.
|
1048 |
-
Therefore, it can be used to re-rank the top-k documents returned by embedding model.
|
1049 |
-
We train the cross-encoder on a multilingual pair data,
|
1050 |
-
The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker).
|
1051 |
-
More details pelease refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
|
1052 |
-
|
1053 |
-
|
1054 |
-
## Contact
|
1055 |
-
If you have any question or suggestion related to this project, feel free to open an issue or pull request.
|
1056 |
-
You also can email Shitao Xiao(stxiao@baai.ac.cn) and Zheng Liu(liuzheng@baai.ac.cn).
|
1057 |
-
|
1058 |
-
|
1059 |
-
## License
|
1060 |
-
FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
|
1061 |
-
|
1062 |
-
|
1063 |
-
|
1064 |
|
1065 |
|
1066 |
**Recommend switching to newest [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5), which has more reasonable similarity distribution and same method of usage.**
|
@@ -1083,7 +26,6 @@ FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/Fl
|
|
1083 |
More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
|
1084 |
|
1085 |
|
1086 |
-
|
1087 |
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
|
1088 |
|
1089 |
FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
+
pipeline_tag: sentence-similarity
|
6 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
**Recommend switching to newest [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5), which has more reasonable similarity distribution and same method of usage.**
|
|
|
26 |
More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
|
27 |
|
28 |
|
|
|
29 |
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
|
30 |
|
31 |
FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
|