update
Browse files
README.md
CHANGED
@@ -2620,15 +2620,33 @@ pipeline_tag: sentence-similarity
|
|
2620 |
|
2621 |
More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
|
2622 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2623 |
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
|
2624 |
|
2625 |
FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
|
2626 |
-
And it also can be used in vector
|
2627 |
|
2628 |
************* 🌟**Updates**🌟 *************
|
2629 |
-
-
|
|
|
|
|
|
|
|
|
2630 |
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
|
2631 |
-
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!**
|
2632 |
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
|
2633 |
|
2634 |
|
@@ -2636,21 +2654,80 @@ And it also can be used in vector database for LLMs.
|
|
2636 |
|
2637 |
`bge` is short for `BAAI general embedding`.
|
2638 |
|
2639 |
-
| Model | Language | Description | query instruction for retrieval\* |
|
2640 |
-
|:-------------------------------|:--------:| :--------:|
|
2641 |
-
| [BAAI/bge-large
|
2642 |
-
| [BAAI/bge-base
|
2643 |
-
| [BAAI/bge-
|
2644 |
-
| [BAAI/bge-
|
2645 |
-
| [BAAI/bge-
|
2646 |
-
| [BAAI/bge-
|
2647 |
-
| [BAAI/bge-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2648 |
|
2649 |
-
\*: If you need to search the **long** relevant passages to a **short** query (s2p retrieval task), you need to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** need to be added to passages.
|
2650 |
|
2651 |
## Usage
|
2652 |
|
2653 |
-
|
|
|
|
|
2654 |
[FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
|
2655 |
|
2656 |
#### Using FlagEmbedding
|
@@ -2661,14 +2738,15 @@ If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagO
|
|
2661 |
|
2662 |
```python
|
2663 |
from FlagEmbedding import FlagModel
|
2664 |
-
|
|
|
2665 |
model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
|
2666 |
-
embeddings_1 = model.encode(
|
2667 |
-
embeddings_2 = model.encode(
|
2668 |
similarity = embeddings_1 @ embeddings_2.T
|
2669 |
print(similarity)
|
2670 |
|
2671 |
-
# for s2p(short query to long passage) retrieval task,
|
2672 |
# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
|
2673 |
queries = ['query_1', 'query_2']
|
2674 |
passages = ["样例文档-1", "样例文档-2"]
|
@@ -2676,24 +2754,26 @@ q_embeddings = model.encode_queries(queries)
|
|
2676 |
p_embeddings = model.encode(passages)
|
2677 |
scores = q_embeddings @ p_embeddings.T
|
2678 |
```
|
2679 |
-
|
2680 |
|
2681 |
-
FlagModel will use all available GPUs when encoding
|
|
|
2682 |
|
2683 |
|
2684 |
#### Using Sentence-Transformers
|
2685 |
|
2686 |
-
|
2687 |
|
2688 |
```
|
2689 |
pip install -U sentence-transformers
|
2690 |
```
|
2691 |
```python
|
2692 |
from sentence_transformers import SentenceTransformer
|
2693 |
-
|
|
|
2694 |
model = SentenceTransformer('BAAI/bge-large-zh')
|
2695 |
-
embeddings_1 = model.encode(
|
2696 |
-
embeddings_2 = model.encode(
|
2697 |
similarity = embeddings_1 @ embeddings_2.T
|
2698 |
print(similarity)
|
2699 |
```
|
@@ -2720,17 +2800,19 @@ from langchain.embeddings import HuggingFaceBgeEmbeddings
|
|
2720 |
model_name = "BAAI/bge-small-en"
|
2721 |
model_kwargs = {'device': 'cuda'}
|
2722 |
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
|
2723 |
-
|
2724 |
model_name=model_name,
|
2725 |
model_kwargs=model_kwargs,
|
2726 |
-
encode_kwargs=encode_kwargs
|
|
|
2727 |
)
|
|
|
2728 |
```
|
2729 |
|
2730 |
|
2731 |
#### Using HuggingFace Transformers
|
2732 |
|
2733 |
-
With transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of first token (i.e., [CLS]) as the sentence embedding.
|
2734 |
|
2735 |
```python
|
2736 |
from transformers import AutoTokenizer, AutoModel
|
@@ -2741,6 +2823,7 @@ sentences = ["样例数据-1", "样例数据-2"]
|
|
2741 |
# Load model from HuggingFace Hub
|
2742 |
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh')
|
2743 |
model = AutoModel.from_pretrained('BAAI/bge-large-zh')
|
|
|
2744 |
|
2745 |
# Tokenize sentences
|
2746 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -2757,21 +2840,65 @@ sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, di
|
|
2757 |
print("Sentence embeddings:", sentence_embeddings)
|
2758 |
```
|
2759 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2760 |
|
2761 |
## Evaluation
|
|
|
2762 |
`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
|
2763 |
-
|
2764 |
|
2765 |
- **MTEB**:
|
2766 |
|
2767 |
| Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
|
2768 |
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
2769 |
-
| [
|
2770 |
-
| [
|
|
|
|
|
|
|
2771 |
| [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
|
2772 |
| [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
|
2773 |
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
|
2774 |
-
| [
|
2775 |
| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
|
2776 |
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
|
2777 |
| [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
|
@@ -2780,89 +2907,80 @@ More details and evaluation tools see our [scripts](https://github.com/FlagOpen/
|
|
2780 |
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
|
2781 |
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
|
2782 |
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
|
2783 |
-
| [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) | 384 | 512 | 56.53 | 42.69 | 41.81 | 82.41 | 58.44 | 79.8 | 27.9 | 63.21 |
|
2784 |
-
| [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | 384 | 512 | 56.26 | 41.95 | 42.35 | 82.37 | 58.04 | 78.9 | 30.81 | 63.05 |
|
2785 |
-
| [contriever-base-msmarco](https://huggingface.co/nthakur/contriever-base-msmarco) | 768 | 512 | 56.00 | 41.88 | 41.1 | 82.54 | 53.14 | 76.51 | 30.36 | 66.68 |
|
2786 |
-
| [sentence-t5-base](https://huggingface.co/sentence-transformers/sentence-t5-base) | 768 | 512 | 55.27 | 33.63 | 40.21 | 85.18 | 53.09 | 81.14 | 31.39 | 69.81 |
|
2787 |
|
2788 |
|
2789 |
|
2790 |
- **C-MTEB**:
|
2791 |
-
We create
|
2792 |
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
|
2793 |
|
2794 |
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|
2795 |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
2796 |
-
| [**bge-large-zh**](https://huggingface.co/BAAI/bge-large-zh) | 1024 |
|
2797 |
-
| [
|
2798 |
-
| [
|
2799 |
-
| [
|
2800 |
-
| [
|
2801 |
-
| [
|
2802 |
-
| [
|
2803 |
-
| [
|
2804 |
-
| [
|
2805 |
-
| [
|
2806 |
-
|
|
|
|
|
|
|
|
|
|
|
2807 |
|
2808 |
|
2809 |
-
|
2810 |
-
|
2811 |
-
The training scripts are in [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md),
|
2812 |
-
and we provide some examples to do [pre-train](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/pretrain/README.md) and [fine-tune](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/finetune/README.md).
|
2813 |
-
|
2814 |
|
2815 |
-
|
2816 |
-
|
2817 |
-
|
2818 |
-
|
2819 |
-
|
2820 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
2821 |
|
2822 |
-
|
2823 |
-
- English:
|
2824 |
-
- [Pile](https://pile.eleuther.ai/)
|
2825 |
-
- [wikipedia](https://huggingface.co/datasets/wikipedia)
|
2826 |
-
- [msmarco](https://huggingface.co/datasets/Tevatron/msmarco-passage-corpus)
|
2827 |
-
- Chinese:
|
2828 |
-
- [wudao](https://github.com/BAAI-WuDao/Data)
|
2829 |
|
|
|
2830 |
|
2831 |
-
|
2832 |
-
We fine-tune the model using a contrastive objective.
|
2833 |
-
The format of input data is a triple`(query, positive, negative)`.
|
2834 |
-
Besides the negative in the triple, we also adopt in-batch negatives strategy.
|
2835 |
-
We employ the cross-device negatives sharing method to share negatives among different GPUs,
|
2836 |
-
which can dramatically **increase the number of negatives**.
|
2837 |
-
|
2838 |
-
We trained our model on 48 A100(40G) GPUs with a large batch size of 32,768 (so there are **65,535** negatives for each query in a batch).
|
2839 |
-
We used the AdamW optimizer and the learning rate is 1e-5.
|
2840 |
-
The temperature for contrastive loss is 0.01.
|
2841 |
-
|
2842 |
-
Besides, we add instruction to the query for s2p(short query to long passage) retrieval task in the training (add nothing to passages).
|
2843 |
-
For English, the instruction is `Represent this sentence for searching relevant passages: `;
|
2844 |
-
For Chinese, the instruction is `为这个句子生成表示以用于检索相关文章:`.
|
2845 |
-
In the evaluation, the instruction should be added for queries in retrieval task, not be added for other tasks.
|
2846 |
-
Noted that the instruction is not needed for passages.
|
2847 |
|
2848 |
-
|
2849 |
-
You can
|
|
|
|
|
|
|
2850 |
|
2851 |
-
**Training data**:
|
2852 |
|
2853 |
-
- For English, we collect 230M text pairs from [wikipedia](https://huggingface.co/datasets/wikipedia), [cc-net](https://github.com/facebookresearch/cc_net), and so on.
|
2854 |
|
2855 |
-
|
2856 |
|
2857 |
-
|
|
|
|
|
|
|
|
|
|
|
2858 |
|
2859 |
-
We will continually update the embedding models and training codes,
|
2860 |
-
hoping to promote the development of the embedding model community.
|
2861 |
|
|
|
|
|
|
|
2862 |
|
2863 |
|
2864 |
## License
|
2865 |
-
FlagEmbedding is licensed under [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
|
2866 |
|
2867 |
|
2868 |
|
|
|
2620 |
|
2621 |
More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
|
2622 |
|
2623 |
+
|
2624 |
+
<h4 align="center">
|
2625 |
+
<p>
|
2626 |
+
<a href=#model-list>Model List</a> |
|
2627 |
+
<a href=#frequently-asked-questions>FAQ</a> |
|
2628 |
+
<a href=#usage>Usage</a> |
|
2629 |
+
<a href="#evaluation">Evaluation</a> |
|
2630 |
+
<a href="#train">Train</a> |
|
2631 |
+
<a href="#contact">Contact</a> |
|
2632 |
+
<a href="#license">License</a>
|
2633 |
+
<p>
|
2634 |
+
</h4>
|
2635 |
+
|
2636 |
+
|
2637 |
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
|
2638 |
|
2639 |
FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
|
2640 |
+
And it also can be used in vector databases for LLMs.
|
2641 |
|
2642 |
************* 🌟**Updates**🌟 *************
|
2643 |
+
- 09/12/2023: New Release:
|
2644 |
+
- **New reranker model**: release a cross-encoder model bge-reranker-base, which is more powerful than embedding model. We recommend to use/fine-tune it to re-rank top-k documents returned by embedding models.
|
2645 |
+
- **update embedding model**: release bge-*-v1.5 embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
|
2646 |
+
- 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning.
|
2647 |
+
- 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).
|
2648 |
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
|
2649 |
+
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
|
2650 |
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
|
2651 |
|
2652 |
|
|
|
2654 |
|
2655 |
`bge` is short for `BAAI general embedding`.
|
2656 |
|
2657 |
+
| Model | Language | | Description | query instruction for retrieval\* |
|
2658 |
+
|:-------------------------------|:--------:| :--------:| :--------:|:--------:|
|
2659 |
+
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | |
|
2660 |
+
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | |
|
2661 |
+
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
2662 |
+
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
2663 |
+
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
2664 |
+
| [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
2665 |
+
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
2666 |
+
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
2667 |
+
| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
|
2668 |
+
| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` |
|
2669 |
+
| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
|
2670 |
+
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
|
2671 |
+
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
|
2672 |
+
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
|
2673 |
+
|
2674 |
+
|
2675 |
+
\*: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
|
2676 |
+
|
2677 |
+
\**: To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models.
|
2678 |
+
For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.
|
2679 |
+
|
2680 |
+
|
2681 |
+
## Frequently asked questions
|
2682 |
+
|
2683 |
+
<details>
|
2684 |
+
<summary>1. How to fine-tune bge embedding model?</summary>
|
2685 |
+
|
2686 |
+
<!-- ### How to fine-tune bge embedding model? -->
|
2687 |
+
Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model.
|
2688 |
+
Some suggestions:
|
2689 |
+
- Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#data-format), which can improve the retrieval performance.
|
2690 |
+
- If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
|
2691 |
+
- If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker.
|
2692 |
+
|
2693 |
+
|
2694 |
+
</details>
|
2695 |
+
|
2696 |
+
<details>
|
2697 |
+
<summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary>
|
2698 |
+
|
2699 |
+
<!-- ### The similarity score between two dissimilar sentences is higher than 0.5 -->
|
2700 |
+
**Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.**
|
2701 |
+
|
2702 |
+
Since we finetune the models by contrastive learning with a temperature of 0.01,
|
2703 |
+
the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
|
2704 |
+
So a similarity score greater than 0.5 does not indicate that the two sentences are similar.
|
2705 |
+
|
2706 |
+
For downstream tasks, such as passage retrieval or semantic similarity,
|
2707 |
+
**what matters is the relative order of the scores, not the absolute value.**
|
2708 |
+
If you need to filter similar sentences based on a similarity threshold,
|
2709 |
+
please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
|
2710 |
+
|
2711 |
+
</details>
|
2712 |
+
|
2713 |
+
<details>
|
2714 |
+
<summary>3. When does the query instruction need to be used</summary>
|
2715 |
+
|
2716 |
+
<!-- ### When does the query instruction need to be used -->
|
2717 |
+
|
2718 |
+
For a retrieval task that uses short queries to find long related documents,
|
2719 |
+
it is recommended to add instructions for these short queries.
|
2720 |
+
**The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
|
2721 |
+
In all cases, the documents/passages do not need to add the instruction.
|
2722 |
+
|
2723 |
+
</details>
|
2724 |
|
|
|
2725 |
|
2726 |
## Usage
|
2727 |
|
2728 |
+
### Usage for Embedding Model
|
2729 |
+
|
2730 |
+
Here are some examples for using `bge` models with
|
2731 |
[FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
|
2732 |
|
2733 |
#### Using FlagEmbedding
|
|
|
2738 |
|
2739 |
```python
|
2740 |
from FlagEmbedding import FlagModel
|
2741 |
+
sentences_1 = ["样例数据-1", "样例数据-2"]
|
2742 |
+
sentences_2 = ["样例数据-3", "样例数据-4"]
|
2743 |
model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
|
2744 |
+
embeddings_1 = model.encode(sentences_1)
|
2745 |
+
embeddings_2 = model.encode(sentences_2)
|
2746 |
similarity = embeddings_1 @ embeddings_2.T
|
2747 |
print(similarity)
|
2748 |
|
2749 |
+
# for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query
|
2750 |
# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
|
2751 |
queries = ['query_1', 'query_2']
|
2752 |
passages = ["样例文档-1", "样例文档-2"]
|
|
|
2754 |
p_embeddings = model.encode(passages)
|
2755 |
scores = q_embeddings @ p_embeddings.T
|
2756 |
```
|
2757 |
+
For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
|
2758 |
|
2759 |
+
By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
|
2760 |
+
You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
|
2761 |
|
2762 |
|
2763 |
#### Using Sentence-Transformers
|
2764 |
|
2765 |
+
You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net):
|
2766 |
|
2767 |
```
|
2768 |
pip install -U sentence-transformers
|
2769 |
```
|
2770 |
```python
|
2771 |
from sentence_transformers import SentenceTransformer
|
2772 |
+
sentences_1 = ["样例数据-1", "样例数据-2"]
|
2773 |
+
sentences_2 = ["样例数据-3", "样例数据-4"]
|
2774 |
model = SentenceTransformer('BAAI/bge-large-zh')
|
2775 |
+
embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
|
2776 |
+
embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
|
2777 |
similarity = embeddings_1 @ embeddings_2.T
|
2778 |
print(similarity)
|
2779 |
```
|
|
|
2800 |
model_name = "BAAI/bge-small-en"
|
2801 |
model_kwargs = {'device': 'cuda'}
|
2802 |
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
|
2803 |
+
model = HuggingFaceBgeEmbeddings(
|
2804 |
model_name=model_name,
|
2805 |
model_kwargs=model_kwargs,
|
2806 |
+
encode_kwargs=encode_kwargs,
|
2807 |
+
query_instruction="为这个句子生成表示以用于检索相关文章:"
|
2808 |
)
|
2809 |
+
model.query_instruction = "为这个句子生成表示以用于检索相关文章:"
|
2810 |
```
|
2811 |
|
2812 |
|
2813 |
#### Using HuggingFace Transformers
|
2814 |
|
2815 |
+
With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding.
|
2816 |
|
2817 |
```python
|
2818 |
from transformers import AutoTokenizer, AutoModel
|
|
|
2823 |
# Load model from HuggingFace Hub
|
2824 |
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh')
|
2825 |
model = AutoModel.from_pretrained('BAAI/bge-large-zh')
|
2826 |
+
model.eval()
|
2827 |
|
2828 |
# Tokenize sentences
|
2829 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
2840 |
print("Sentence embeddings:", sentence_embeddings)
|
2841 |
```
|
2842 |
|
2843 |
+
### Usage for Reranker
|
2844 |
+
|
2845 |
+
You can get a relevance score by inputting query and passage to the reranker.
|
2846 |
+
The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
|
2847 |
+
|
2848 |
+
|
2849 |
+
#### Using FlagEmbedding
|
2850 |
+
```
|
2851 |
+
pip install -U FlagEmbedding
|
2852 |
+
```
|
2853 |
+
|
2854 |
+
Get relevance score:
|
2855 |
+
```python
|
2856 |
+
from FlagEmbedding import FlagReranker
|
2857 |
+
reranker = FlagReranker('BAAI/bge-reranker-base', use_fp16=True) #use fp16 can speed up computing
|
2858 |
+
|
2859 |
+
score = reranker.compute_score(['query', 'passage'])
|
2860 |
+
print(score)
|
2861 |
+
|
2862 |
+
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
|
2863 |
+
print(scores)
|
2864 |
+
```
|
2865 |
+
|
2866 |
+
|
2867 |
+
#### Using Huggingface transformers
|
2868 |
+
|
2869 |
+
```python
|
2870 |
+
import torch
|
2871 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, BatchEncoding, PreTrainedTokenizerFast
|
2872 |
+
|
2873 |
+
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-base')
|
2874 |
+
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-base')
|
2875 |
+
model.eval()
|
2876 |
+
|
2877 |
+
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
|
2878 |
+
with torch.no_grad():
|
2879 |
+
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
|
2880 |
+
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
|
2881 |
+
print(scores)
|
2882 |
+
```
|
2883 |
|
2884 |
## Evaluation
|
2885 |
+
|
2886 |
`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
|
2887 |
+
For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
|
2888 |
|
2889 |
- **MTEB**:
|
2890 |
|
2891 |
| Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
|
2892 |
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
2893 |
+
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 |
|
2894 |
+
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 |
|
2895 |
+
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 |
|
2896 |
+
| [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 |
|
2897 |
+
| [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
|
2898 |
| [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
|
2899 |
| [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
|
2900 |
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
|
2901 |
+
| [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
|
2902 |
| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
|
2903 |
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
|
2904 |
| [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
|
|
|
2907 |
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
|
2908 |
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
|
2909 |
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
|
|
|
|
|
|
|
|
|
2910 |
|
2911 |
|
2912 |
|
2913 |
- **C-MTEB**:
|
2914 |
+
We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
|
2915 |
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
|
2916 |
|
2917 |
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|
2918 |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
2919 |
+
| [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 |
|
2920 |
+
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 |
|
2921 |
+
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 |
|
2922 |
+
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 |
|
2923 |
+
| [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 |
|
2924 |
+
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 |
|
2925 |
+
| [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 |
|
2926 |
+
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 |
|
2927 |
+
| [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 |
|
2928 |
+
| [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 |
|
2929 |
+
| [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 |
|
2930 |
+
| [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 |
|
2931 |
+
| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 |
|
2932 |
+
| [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 |
|
2933 |
+
| [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 |
|
2934 |
+
| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 |
|
2935 |
|
2936 |
|
2937 |
+
- **Reranking**:
|
2938 |
+
See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
|
|
|
|
|
|
|
2939 |
|
2940 |
+
| Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MmarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
|
2941 |
+
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
2942 |
+
| text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
|
2943 |
+
| multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
|
2944 |
+
| multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 |
|
2945 |
+
| multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 |
|
2946 |
+
| m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 |
|
2947 |
+
| m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 |
|
2948 |
+
| bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 |
|
2949 |
+
| bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 |
|
2950 |
+
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
|
2951 |
+
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
|
2952 |
|
2953 |
+
\* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval task
|
|
|
|
|
|
|
|
|
|
|
|
|
2954 |
|
2955 |
+
## Train
|
2956 |
|
2957 |
+
### BAAI Embedding
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2958 |
|
2959 |
+
We pre-train the models using retromae and train them on large-scale pairs data using contrastive learning.
|
2960 |
+
**You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
|
2961 |
+
We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
|
2962 |
+
Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
|
2963 |
+
More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
|
2964 |
|
|
|
2965 |
|
|
|
2966 |
|
2967 |
+
### BGE Reranker
|
2968 |
|
2969 |
+
Cross-encoder will perform full-attention over the input pair,
|
2970 |
+
which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model.
|
2971 |
+
Therefore, it can be used to re-rank the top-k documents returned by embedding model.
|
2972 |
+
We train the cross-encoder on a multilingual pair data,
|
2973 |
+
The data format is the same as embedding model, so you can fine-tune it easily following our example.
|
2974 |
+
More details pelease refer to [./FlagEmbedding/reranker/README.md](./FlagEmbedding/reranker/README.md)
|
2975 |
|
|
|
|
|
2976 |
|
2977 |
+
## Contact
|
2978 |
+
If you have any question or suggestion related to this project, feel free to open an issue or pull request.
|
2979 |
+
You also can email Shitao Xiao(stxiao@baai.ac.cn) and Zheng Liu(liuzheng@baai.ac.cn).
|
2980 |
|
2981 |
|
2982 |
## License
|
2983 |
+
FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
|
2984 |
|
2985 |
|
2986 |
|