hanhainebula's picture
Upload folder using huggingface_hub
5066db4 verified
if [ -z "$HF_HUB_CACHE" ]; then
export HF_HUB_CACHE="$HOME/.cache/huggingface/hub"
fi
# full datasets
dataset_names="biology earth_science economics psychology robotics stackoverflow sustainable_living leetcode pony aops theoremqa_questions theoremqa_theorems"
model_args="\
--embedder_name_or_path BAAI/bge-reasoner-embed-qwen3-8b-0923 \
--embedder_model_class decoder-only-base \
--query_instruction_format_for_retrieval 'Instruct: {}\nQuery: {}' \
--pooling_method last_token \
--devices cuda:0 cuda:1 cuda:2 cuda:3 cuda:4 cuda:5 cuda:6 cuda:7 \
--cache_dir $HF_HUB_CACHE \
--embedder_batch_size 8 \
--embedder_query_max_length 8192 \
--embedder_passage_max_length 8192 \
"
split_list=("examples" "gpt4_reason")
for split in "${split_list[@]}"; do
eval_args="\
--task_type short \
--use_special_instructions True \
--eval_name bright_short \
--dataset_dir ./bright_short/data \
--dataset_names $dataset_names \
--splits $split \
--corpus_embd_save_dir ./bright_short/corpus_embd \
--output_dir ./bright_short/search_results/$split \
--search_top_k 2000 \
--cache_path $HF_HUB_CACHE \
--overwrite False \
--k_values 1 10 100 \
--eval_output_method markdown \
--eval_output_path ./bright_short/eval_results_$split.md \
--eval_metrics ndcg_at_10 recall_at_10 recall_at_100 \
"
cmd="python -m FlagEmbedding.evaluation.bright \
$eval_args \
$model_args \
"
echo $cmd
eval $cmd
done