BAAI
/

ldwang commited on
Commit
2bc3993
1 Parent(s): 9b21929
Files changed (1) hide show
  1. README.md +373 -0
README.md CHANGED
@@ -688,3 +688,376 @@ FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/Fl
688
 
689
 
690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
688
 
689
 
690
 
691
+
692
+
693
+ **Recommend switching to newest bge-large-zh-noinstruct-v1.5, which has more reasonable similarity distribution and same method of usage.**
694
+
695
+ <h1 align="center">FlagEmbedding</h1>
696
+
697
+
698
+ <h4 align="center">
699
+ <p>
700
+ <a href=#model-list>Model List</a> |
701
+ <a href=#frequently-asked-questions>FAQ</a> |
702
+ <a href=#usage>Usage</a> |
703
+ <a href="#evaluation">Evaluation</a> |
704
+ <a href="#train">Train</a> |
705
+ <a href="#contact">Contact</a> |
706
+ <a href="#license">License</a>
707
+ <p>
708
+ </h4>
709
+
710
+ More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
711
+
712
+
713
+
714
+ [English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
715
+
716
+ FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
717
+ And it also can be used in vector databases for LLMs.
718
+
719
+ ************* 🌟**Updates**🌟 *************
720
+ - 09/12/2023: New Release:
721
+ - **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models.
722
+ - **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
723
+ - 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning.
724
+ - 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).
725
+ - 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
726
+ - 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
727
+ - 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
728
+
729
+
730
+ ## Model List
731
+
732
+ `bge` is short for `BAAI general embedding`.
733
+
734
+ | Model | Language | | Description | query instruction for retrieval\* |
735
+ |:-------------------------------|:--------:| :--------:| :--------:|:--------:|
736
+ | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | |
737
+ | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | |
738
+ | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
739
+ | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
740
+ | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
741
+ | [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
742
+ | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
743
+ | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
744
+ | [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
745
+ | [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` |
746
+ | [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
747
+ | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
748
+ | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
749
+ | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
750
+
751
+
752
+ \*: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
753
+
754
+ \**: Different embedding model, reranker is a cross-encoder, which cannot be used to generate embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models.
755
+ For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.
756
+
757
+
758
+ ## Frequently asked questions
759
+
760
+ <details>
761
+ <summary>1. How to fine-tune bge embedding model?</summary>
762
+
763
+ <!-- ### How to fine-tune bge embedding model? -->
764
+ Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model.
765
+ Some suggestions:
766
+ - Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance.
767
+ - If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
768
+ - If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker.
769
+
770
+
771
+ </details>
772
+
773
+ <details>
774
+ <summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary>
775
+
776
+ <!-- ### The similarity score between two dissimilar sentences is higher than 0.5 -->
777
+ **Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.**
778
+
779
+ Since we finetune the models by contrastive learning with a temperature of 0.01,
780
+ the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
781
+ So a similarity score greater than 0.5 does not indicate that the two sentences are similar.
782
+
783
+ For downstream tasks, such as passage retrieval or semantic similarity,
784
+ **what matters is the relative order of the scores, not the absolute value.**
785
+ If you need to filter similar sentences based on a similarity threshold,
786
+ please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
787
+
788
+ </details>
789
+
790
+ <details>
791
+ <summary>3. When does the query instruction need to be used</summary>
792
+
793
+ <!-- ### When does the query instruction need to be used -->
794
+
795
+ For a retrieval task that uses short queries to find long related documents,
796
+ it is recommended to add instructions for these short queries.
797
+ **The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
798
+ In all cases, the documents/passages do not need to add the instruction.
799
+
800
+ </details>
801
+
802
+
803
+ ## Usage
804
+
805
+ ### Usage for Embedding Model
806
+
807
+ Here are some examples for using `bge` models with
808
+ [FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
809
+
810
+ #### Using FlagEmbedding
811
+ ```
812
+ pip install -U FlagEmbedding
813
+ ```
814
+ If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
815
+
816
+ ```python
817
+ from FlagEmbedding import FlagModel
818
+ sentences_1 = ["样例数据-1", "样例数据-2"]
819
+ sentences_2 = ["样例数据-3", "样例数据-4"]
820
+ model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
821
+ embeddings_1 = model.encode(sentences_1)
822
+ embeddings_2 = model.encode(sentences_2)
823
+ similarity = embeddings_1 @ embeddings_2.T
824
+ print(similarity)
825
+
826
+ # for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query
827
+ # corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
828
+ queries = ['query_1', 'query_2']
829
+ passages = ["样例文档-1", "样例文档-2"]
830
+ q_embeddings = model.encode_queries(queries)
831
+ p_embeddings = model.encode(passages)
832
+ scores = q_embeddings @ p_embeddings.T
833
+ ```
834
+ For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
835
+
836
+ By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
837
+ You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
838
+
839
+
840
+ #### Using Sentence-Transformers
841
+
842
+ You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net):
843
+
844
+ ```
845
+ pip install -U sentence-transformers
846
+ ```
847
+ ```python
848
+ from sentence_transformers import SentenceTransformer
849
+ sentences_1 = ["样例数据-1", "样例数据-2"]
850
+ sentences_2 = ["样例数据-3", "样例数据-4"]
851
+ model = SentenceTransformer('BAAI/bge-large-zh')
852
+ embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
853
+ embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
854
+ similarity = embeddings_1 @ embeddings_2.T
855
+ print(similarity)
856
+ ```
857
+ For s2p(short query to long passage) retrieval task,
858
+ each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
859
+ But the instruction is not needed for passages.
860
+ ```python
861
+ from sentence_transformers import SentenceTransformer
862
+ queries = ['query_1', 'query_2']
863
+ passages = ["样例文档-1", "样例文档-2"]
864
+ instruction = "为这个句子生成表示以用于检索相关文章:"
865
+
866
+ model = SentenceTransformer('BAAI/bge-large-zh')
867
+ q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
868
+ p_embeddings = model.encode(passages, normalize_embeddings=True)
869
+ scores = q_embeddings @ p_embeddings.T
870
+ ```
871
+
872
+ #### Using Langchain
873
+
874
+ You can use `bge` in langchain like this:
875
+ ```python
876
+ from langchain.embeddings import HuggingFaceBgeEmbeddings
877
+ model_name = "BAAI/bge-small-en"
878
+ model_kwargs = {'device': 'cuda'}
879
+ encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
880
+ model = HuggingFaceBgeEmbeddings(
881
+ model_name=model_name,
882
+ model_kwargs=model_kwargs,
883
+ encode_kwargs=encode_kwargs,
884
+ query_instruction="为这个句子生成表示以用于检索相关文章:"
885
+ )
886
+ model.query_instruction = "为这个句子生成表示以用于检索相关文章:"
887
+ ```
888
+
889
+
890
+ #### Using HuggingFace Transformers
891
+
892
+ With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding.
893
+
894
+ ```python
895
+ from transformers import AutoTokenizer, AutoModel
896
+ import torch
897
+ # Sentences we want sentence embeddings for
898
+ sentences = ["样例数据-1", "样例数据-2"]
899
+
900
+ # Load model from HuggingFace Hub
901
+ tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh')
902
+ model = AutoModel.from_pretrained('BAAI/bge-large-zh')
903
+ model.eval()
904
+
905
+ # Tokenize sentences
906
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
907
+ # for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
908
+ # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
909
+
910
+ # Compute token embeddings
911
+ with torch.no_grad():
912
+ model_output = model(**encoded_input)
913
+ # Perform pooling. In this case, cls pooling.
914
+ sentence_embeddings = model_output[0][:, 0]
915
+ # normalize embeddings
916
+ sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
917
+ print("Sentence embeddings:", sentence_embeddings)
918
+ ```
919
+
920
+ ### Usage for Reranker
921
+
922
+ You can get a relevance score by inputting query and passage to the reranker.
923
+ The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
924
+
925
+
926
+ #### Using FlagEmbedding
927
+ ```
928
+ pip install -U FlagEmbedding
929
+ ```
930
+
931
+ Get relevance score:
932
+ ```python
933
+ from FlagEmbedding import FlagReranker
934
+ reranker = FlagReranker('BAAI/bge-reranker-base', use_fp16=True) #use fp16 can speed up computing
935
+
936
+ score = reranker.compute_score(['query', 'passage'])
937
+ print(score)
938
+
939
+ scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
940
+ print(scores)
941
+ ```
942
+
943
+
944
+ #### Using Huggingface transformers
945
+
946
+ ```python
947
+ import torch
948
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer, BatchEncoding, PreTrainedTokenizerFast
949
+
950
+ tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-base')
951
+ model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-base')
952
+ model.eval()
953
+
954
+ pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
955
+ with torch.no_grad():
956
+ inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
957
+ scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
958
+ print(scores)
959
+ ```
960
+
961
+ ## Evaluation
962
+
963
+ `baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
964
+ For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
965
+
966
+ - **MTEB**:
967
+
968
+ | Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
969
+ |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
970
+ | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 |
971
+ | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 |
972
+ | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 |
973
+ | [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 |
974
+ | [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
975
+ | [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
976
+ | [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
977
+ | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
978
+ | [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
979
+ | [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
980
+ | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
981
+ | [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
982
+ | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 |
983
+ | [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 |
984
+ | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
985
+ | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
986
+ | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
987
+
988
+
989
+
990
+ - **C-MTEB**:
991
+ We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
992
+ Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
993
+
994
+ | Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
995
+ |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
996
+ | [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 |
997
+ | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 |
998
+ | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 |
999
+ | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 |
1000
+ | [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 |
1001
+ | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 |
1002
+ | [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 |
1003
+ | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 |
1004
+ | [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 |
1005
+ | [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 |
1006
+ | [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 |
1007
+ | [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 |
1008
+ | [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 |
1009
+ | [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 |
1010
+ | [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 |
1011
+ | [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 |
1012
+
1013
+
1014
+ - **Reranking**:
1015
+ See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
1016
+
1017
+ | Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MmarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
1018
+ |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
1019
+ | text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
1020
+ | multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
1021
+ | multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 |
1022
+ | multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 |
1023
+ | m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 |
1024
+ | m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 |
1025
+ | bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 |
1026
+ | bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 |
1027
+ | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
1028
+ | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
1029
+
1030
+ \* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval task
1031
+
1032
+ ## Train
1033
+
1034
+ ### BAAI Embedding
1035
+
1036
+ We pre-train the models using retromae and train them on large-scale pairs data using contrastive learning.
1037
+ **You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
1038
+ We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
1039
+ Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
1040
+ More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
1041
+
1042
+
1043
+
1044
+ ### BGE Reranker
1045
+
1046
+ Cross-encoder will perform full-attention over the input pair,
1047
+ which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model.
1048
+ Therefore, it can be used to re-rank the top-k documents returned by embedding model.
1049
+ We train the cross-encoder on a multilingual pair data,
1050
+ The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker).
1051
+ More details pelease refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
1052
+
1053
+
1054
+ ## Contact
1055
+ If you have any question or suggestion related to this project, feel free to open an issue or pull request.
1056
+ You also can email Shitao Xiao(stxiao@baai.ac.cn) and Zheng Liu(liuzheng@baai.ac.cn).
1057
+
1058
+
1059
+ ## License
1060
+ FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
1061
+
1062
+
1063
+