Upload folder using huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
license: mit
|
8 |
+
---
|
9 |
+
|
10 |
+
For more details please refer to our github repo: https://github.com/FlagOpen/FlagEmbedding
|
11 |
+
|
12 |
+
# LLARA ([paper](https://arxiv.org/pdf/2312.15503))
|
13 |
+
|
14 |
+
In this project, we introduce LLaRA:
|
15 |
+
- EBAE: Embedding-Based Auto-Encoding.
|
16 |
+
- EBAR: Embedding-Based Auto-Regression.
|
17 |
+
|
18 |
+
|
19 |
+
## Usage
|
20 |
+
|
21 |
+
```
|
22 |
+
import torch
|
23 |
+
from transformers import AutoModel, AutoTokenizer, LlamaModel
|
24 |
+
|
25 |
+
def get_query_inputs(queries, tokenizer, max_length=512):
|
26 |
+
prefix = '"'
|
27 |
+
suffix = '", predict the following passage within eight words: <s9><s10><s11><s12><s13><s14><s15><s16>'
|
28 |
+
prefix_ids = tokenizer(prefix, return_tensors=None)['input_ids']
|
29 |
+
suffix_ids = tokenizer(suffix, return_tensors=None)['input_ids'][1:]
|
30 |
+
queries_inputs = []
|
31 |
+
for query in queries:
|
32 |
+
inputs = tokenizer(query,
|
33 |
+
return_tensors=None,
|
34 |
+
max_length=max_length,
|
35 |
+
truncation=True,
|
36 |
+
add_special_tokens=False)
|
37 |
+
inputs['input_ids'] = prefix_ids + inputs['input_ids'] + suffix_ids
|
38 |
+
inputs['attention_mask'] = [1] * len(inputs['input_ids'])
|
39 |
+
queries_inputs.append(inputs)
|
40 |
+
return tokenizer.pad(
|
41 |
+
queries_inputs,
|
42 |
+
padding=True,
|
43 |
+
max_length=max_length,
|
44 |
+
pad_to_multiple_of=8,
|
45 |
+
return_tensors='pt',
|
46 |
+
)
|
47 |
+
|
48 |
+
def get_passage_inputs(passages, tokenizer, max_length=512):
|
49 |
+
prefix = '"'
|
50 |
+
suffix = '", summarize the above passage within eight words: <s1><s2><s3><s4><s5><s6><s7><s8>'
|
51 |
+
prefix_ids = tokenizer(prefix, return_tensors=None)['input_ids']
|
52 |
+
suffix_ids = tokenizer(suffix, return_tensors=None)['input_ids'][1:]
|
53 |
+
passages_inputs = []
|
54 |
+
for passage in passages:
|
55 |
+
inputs = tokenizer(passage,
|
56 |
+
return_tensors=None,
|
57 |
+
max_length=max_length,
|
58 |
+
truncation=True,
|
59 |
+
add_special_tokens=False)
|
60 |
+
inputs['input_ids'] = prefix_ids + inputs['input_ids'] + suffix_ids
|
61 |
+
inputs['attention_mask'] = [1] * len(inputs['input_ids'])
|
62 |
+
passages_inputs.append(inputs)
|
63 |
+
return tokenizer.pad(
|
64 |
+
passages_inputs,
|
65 |
+
padding=True,
|
66 |
+
max_length=max_length,
|
67 |
+
pad_to_multiple_of=8,
|
68 |
+
return_tensors='pt',
|
69 |
+
)
|
70 |
+
|
71 |
+
# Load the tokenizer and model
|
72 |
+
tokenizer = AutoTokenizer.from_pretrained('BAAI/LLARA-document')
|
73 |
+
model = AutoModel.from_pretrained('BAAI/LLARA-document')
|
74 |
+
|
75 |
+
# Define query and passage inputs
|
76 |
+
query = "What is llama?"
|
77 |
+
title = "Llama"
|
78 |
+
passage = "The llama is a domesticated South American camelid, widely used as a meat and pack animal by Andean cultures since the pre-Columbian era."
|
79 |
+
query_input = get_query_inputs([query], tokenizer)
|
80 |
+
passage_input = get_passage_inputs([passage], tokenizer)
|
81 |
+
|
82 |
+
|
83 |
+
with torch.no_grad():
|
84 |
+
# compute query embedding
|
85 |
+
query_outputs = model(**query_input, return_dict=True, output_hidden_states=True)
|
86 |
+
query_embedding = query_outputs.hidden_states[-1][:, -8:, :]
|
87 |
+
query_embedding = torch.mean(query_embedding, dim=1)
|
88 |
+
query_embedding = torch.nn.functional.normalize(query_embedding, dim=-1)
|
89 |
+
|
90 |
+
# compute passage embedding
|
91 |
+
passage_outputs = model(**passage_input, return_dict=True, output_hidden_states=True)
|
92 |
+
passage_embeddings = passage_outputs.hidden_states[-1][:, -8:, :]
|
93 |
+
passage_embeddings = torch.mean(passage_embeddings, dim=1)
|
94 |
+
passage_embeddings = torch.nn.functional.normalize(passage_embeddings, dim=-1)
|
95 |
+
|
96 |
+
# compute similarity score
|
97 |
+
score = query_embedding @ passage_embeddings.T
|
98 |
+
print(score)
|
99 |
+
|
100 |
+
```
|
101 |
+
|
102 |
+
|
103 |
+
## Acknowledgement
|
104 |
+
|
105 |
+
Thanks to the authors of open-sourced datasets, including MSMARCO, BEIR, etc.
|
106 |
+
Thanks to the open-sourced libraries like [Pyserini](https://github.com/castorini/pyserini).
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
## Citation
|
111 |
+
|
112 |
+
If you find this repository useful, please consider giving a star :star: and citation
|
113 |
+
|
114 |
+
```
|
115 |
+
@misc{li2023making,
|
116 |
+
title={Making Large Language Models A Better Foundation For Dense Retrieval},
|
117 |
+
author={Chaofan Li and Zheng Liu and Shitao Xiao and Yingxia Shao},
|
118 |
+
year={2023},
|
119 |
+
eprint={2312.15503},
|
120 |
+
archivePrefix={arXiv},
|
121 |
+
primaryClass={cs.CL}
|
122 |
+
}
|
123 |
+
```
|