BAAI
/

Emu3-VisionTokenizer / modeling_emu3visionvq.py
ryanzhangfan's picture
Upload 6 files
b044178 verified
raw
history blame
24.4 kB
# coding=utf-8
# Copyright 2024 The Emu team, BAAI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Emu3VisionVQ model """
import math
from typing import Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import functional as F
from transformers.modeling_utils import PreTrainedModel
from .configuration_emu3visionvq import Emu3VisionVQConfig
class Emu3VisionVQActivation(nn.Module):
def __init__(self):
super().__init__()
def __call__(self, x: torch.Tensor):
return x * torch.sigmoid(x)
class Emu3VisionVQUpsample(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.conv = nn.Conv2d(
in_channels,
in_channels,
kernel_size=3,
stride=1,
padding=1,
)
def forward(self, x: torch.Tensor):
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
x = self.conv(x)
return x
class Emu3VisionVQDownsample(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.conv = nn.Conv2d(
in_channels,
in_channels,
kernel_size=3,
stride=2,
padding=0,
)
def forward(self, x: torch.Tensor):
pad = (0, 1, 0, 1)
x = F.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
return x
class Emu3VisionVQCausalConv3d(nn.Module):
def __init__(
self,
in_channel: int,
out_channel: int,
kernel_size: Union[int, Tuple[int, ...]] = (3, 1, 1),
stride: Union[int, Tuple[int, ...]] = (1, 1, 1),
):
super().__init__()
if isinstance(kernel_size, int):
kernel_size = (kernel_size,) * 3
if isinstance(stride, int):
stride = (stride,) * 3
hw_pad = [k - s for k, s in zip(kernel_size[1:], stride[1:])]
self.padding = tuple()
for p in hw_pad[::-1]:
self.padding += (p // 2 + p % 2, p // 2)
self.padding += (2, 0)
self.conv = nn.Conv3d(
in_channel,
out_channel,
kernel_size,
stride=stride,
)
def forward(self, x: torch.Tensor):
x = F.pad(x, self.padding)
x = self.conv(x)
return x
class Emu3VisionVQResnetTemporalBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: Optional[int] = None,
conv_shortcut: bool = False,
dropout: float = 0.0,
):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
stride = (1, 1, 1)
kernel_size = (3, 3, 3)
self.norm1 = nn.BatchNorm3d(in_channels)
self.conv1 = Emu3VisionVQCausalConv3d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
)
self.norm2 = nn.BatchNorm3d(out_channels)
self.dropout = nn.Dropout(dropout)
self.conv2 = Emu3VisionVQCausalConv3d(
out_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
)
self.act = Emu3VisionVQActivation()
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = Emu3VisionVQCausalConv3d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
)
else:
self.nin_shortcut = nn.Conv3d(
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
)
def forward(self, x: torch.Tensor):
h = self.norm1(x)
h = self.act(h)
h = self.conv1(h)
h = self.norm2(h)
h = self.act(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return x + h
class Emu3VisionVQSpatialNorm(nn.Module):
def __init__(
self,
f_channels: int,
zq_channels: int,
norm_layer: nn.Module = nn.GroupNorm,
add_conv: bool = False,
num_groups: int = 32,
eps: float = 1e-6,
affine: bool = True,
):
super().__init__()
self.norm_layer = norm_layer(
num_channels=f_channels,
num_groups=num_groups,
eps=eps,
affine=affine,
)
self.add_conv = add_conv
if self.add_conv:
self.conv = nn.Conv2d(
zq_channels,
zq_channels,
kernel_size=3,
stride=1,
padding=1,
)
self.conv_y = nn.Conv2d(
zq_channels,
f_channels,
kernel_size=1,
stride=1,
padding=0,
)
self.conv_b = nn.Conv2d(
zq_channels,
f_channels,
kernel_size=1,
stride=1,
padding=0,
)
def forward(self, x: torch.Tensor, zq: torch.Tensor):
zq = F.interpolate(zq, size=x.shape[-2:], mode="nearest")
if self.add_conv:
zq = self.conv(zq)
x = self.norm_layer(x)
x = x * self.conv_y(zq) + self.conv_b(zq)
return x
class Emu3VisionVQResnetBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: Optional[int] = None,
conv_shortcut: bool = False,
dropout: float = 0.0,
zq_ch: Optional[int] = None,
add_conv: bool = False,
):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.zq_ch = zq_ch
if zq_ch is None:
norm_kwargs = dict(num_groups=32, eps=1e-6, affine=True)
self.norm1 = nn.GroupNorm(num_channels=in_channels, **norm_kwargs)
self.norm2 = nn.GroupNorm(num_channels=out_channels, **norm_kwargs)
else:
self.norm1 = Emu3VisionVQSpatialNorm(in_channels, zq_ch, add_conv=add_conv)
self.norm2 = Emu3VisionVQSpatialNorm(out_channels, zq_ch, add_conv=add_conv)
self.conv1 = nn.Conv2d(
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
)
self.dropout = nn.Dropout(dropout)
self.conv2 = nn.Conv2d(
out_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
)
self.act = Emu3VisionVQActivation()
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = nn.Conv2d(
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
)
else:
self.nin_shortcut = nn.Conv2d(
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
)
def forward(self, x: torch.Tensor, zq: Optional[torch.Tensor] = None):
norm_args = tuple() if self.zq_ch is None else (zq, )
h = self.norm1(x, *norm_args)
h = self.act(h)
h = self.conv1(h)
h = self.norm2(h, *norm_args)
h = self.act(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return x + h
class Emu3VisionVQAttnBlock(nn.Module):
def __init__(
self,
in_channels: int,
zq_ch: Optional[int] = None,
add_conv: bool = False
):
super().__init__()
self.in_channels = in_channels
self.zq_ch = zq_ch
if zq_ch is None:
norm_kwargs = dict(num_groups=32, eps=1e-6, affine=True)
self.norm = nn.GroupNorm(num_channels=in_channels, **norm_kwargs)
else:
self.norm = Emu3VisionVQSpatialNorm(in_channels, zq_ch, add_conv=add_conv)
self.q = nn.Conv2d(
in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0,
)
self.k = nn.Conv2d(
in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0,
)
self.v = nn.Conv2d(
in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0,
)
self.proj_out = nn.Conv2d(
in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0,
)
def forward(self, x: torch.Tensor, zq: Optional[torch.Tensor] = None):
norm_args = tuple() if self.zq_ch is None else (zq, )
nx = self.norm(x, *norm_args)
q = self.q(nx)
k = self.k(nx)
v = self.v(nx)
# compute attention
b, c, h, w = q.shape
q = q.reshape(b, c, h * w)
k = k.reshape(b, c, h * w)
score = torch.bmm(q.permute(0, 2, 1), k)
score = score / (c ** 0.5)
score = F.softmax(score, dim=2)
# attend to values
v = v.reshape(b, c, h * w)
v = torch.bmm(v, score.permute(0, 2, 1))
v = v.reshape(b, c, h, w)
v = self.proj_out(v)
return x + v
class Emu3VisionVQTemporalUpsample(nn.Module):
def __init__(
self,
in_channel: int,
out_channel: int,
kernel_size: Tuple[int, ...] = (3, 3, 3),
stride: Tuple[int, ...] = (1, 1, 1)
):
super().__init__()
self.in_channel = in_channel
self.out_channel = out_channel
self.conv = Emu3VisionVQCausalConv3d(
in_channel,
out_channel,
kernel_size,
stride=stride,
)
def forward(self, x: torch.Tensor):
b, c, t, h, w = x.shape
x = x.permute(0, 1, 3, 4, 2).contiguous().view(b, -1, t)
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
x = x.view(b, c, h, w, -1).permute(0, 1, 4, 2, 3).contiguous()
x = self.conv(x)
return x
class Emu3VisionVQTemporalDownsample(nn.Module):
def __init__(
self,
in_channel: int,
out_channel: int,
kernel_size: Tuple[int, ...] = (4, 3, 3),
stride: Tuple[int, ...] = (2, 1, 1),
):
super().__init__()
self.in_channel = in_channel
self.out_channel = out_channel
self.kernel_size = kernel_size
self.conv = Emu3VisionVQCausalConv3d(
in_channel,
out_channel,
kernel_size=kernel_size,
stride=stride,
)
def forward(self, x: torch.Tensor):
x = self.conv(x)
return x
class Emu3VisionVQVectorQuantizer(nn.Module):
def __init__(self, config: Emu3VisionVQConfig):
super().__init__()
self.embedding = nn.Embedding(config.codebook_size, config.embed_dim)
self.embedding.weight.data.uniform_(-1.0 / config.codebook_size, 1.0 / config.codebook_size)
def forward(self, x: torch.Tensor):
# b t c h w -> b t h w c
b, t, c, h, w = x.shape
x = x.permute(0, 1, 3, 4, 2).contiguous()
x_flattened = x.view(-1, c)
codebook = self.embedding.weight
d = torch.sum(x_flattened ** 2, dim=1, keepdim=True) + \
torch.sum(codebook ** 2, dim=1) - 2 * \
torch.einsum('bd,dn->bn', x_flattened, codebook.permute(1, 0))
indices = torch.argmin(d, dim=1)
indices = indices.view(b, t, h, w)
return indices
class Emu3VisionVQEncoder(nn.Module):
def __init__(self, config: Emu3VisionVQConfig):
super().__init__()
self.ch = config.ch
self.num_resolutions = len(config.ch_mult)
self.num_res_blocks = config.num_res_blocks
self.in_channels = config.in_channels
# downsampling
self.conv_in = nn.Conv2d(
self.in_channels,
self.ch,
kernel_size=3,
stride=1,
padding=1
)
in_ch_mult = (1,) + tuple(config.ch_mult)
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = config.ch * in_ch_mult[i_level]
block_out = config.ch * config.ch_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(
Emu3VisionVQResnetBlock(
in_channels=block_in,
out_channels=block_out,
dropout=config.dropout,
)
)
block_in = block_out
if i_level in config.attn_resolutions:
attn.append(Emu3VisionVQAttnBlock(block_in))
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = Emu3VisionVQDownsample(block_in)
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = Emu3VisionVQResnetBlock(
in_channels=block_in,
out_channels=block_in,
dropout=config.dropout,
)
self.mid.attn_1 = Emu3VisionVQAttnBlock(block_in)
self.mid.block_2 = Emu3VisionVQResnetBlock(
in_channels=block_in,
out_channels=block_in,
dropout=config.dropout,
)
# end
self.norm_out = nn.GroupNorm(num_channels=block_in, num_groups=32, eps=1e-6, affine=True)
out_z_channels = 2 * config.z_channels if config.double_z else config.z_channels
self.conv_out = nn.Conv2d(
block_in,
out_z_channels,
kernel_size=3,
stride=1,
padding=1,
)
temporal_down_blocks = int(math.log2(config.temporal_downsample_factor))
self.time_conv = nn.ModuleList()
for i in range(temporal_down_blocks):
conv = Emu3VisionVQTemporalDownsample(out_z_channels, out_z_channels)
self.time_conv.append(conv)
self.time_res_stack = nn.Sequential(*[
Emu3VisionVQResnetTemporalBlock(
in_channels=out_z_channels,
out_channels=out_z_channels,
dropout=config.dropout,
) for _ in range(self.num_res_blocks)
])
self.act = Emu3VisionVQActivation()
def forward(self, x: torch.Tensor):
t = x.shape[1]
x = x.reshape(-1, *x.shape[2:])
# downsampling
h = self.conv_in(x)
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](h)
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
if i_level != self.num_resolutions - 1:
h = self.down[i_level].downsample(h)
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
# end
h = self.norm_out(h)
h = self.act(h)
h = self.conv_out(h)
h = h.reshape(-1, t, *h.shape[1:])
h = h.permute(0, 2, 1, 3, 4)
for conv in self.time_conv:
h = self.act(conv(h))
h = self.time_res_stack(h)
h = h.permute(0, 2, 1, 3, 4)
return h
class Emu3VisionVQDecoder(nn.Module):
def __init__(self, config: Emu3VisionVQConfig):
super().__init__()
self.ch = config.ch
self.num_resolutions = len(config.ch_mult)
self.num_res_blocks = config.num_res_blocks
in_ch_mult = (1,) + tuple(config.ch_mult)
zq_ch = config.embed_dim
block_in = config.ch * config.ch_mult[-1]
self.time_res_stack = nn.Sequential(*[
Emu3VisionVQResnetTemporalBlock(
in_channels=config.z_channels,
out_channels=config.z_channels,
dropout=config.dropout,
) for _ in range(config.num_res_blocks)
])
tempo_upsample_block_num = int(math.log2(config.temporal_downsample_factor))
self.time_conv = nn.ModuleList()
for i in range(tempo_upsample_block_num):
conv = Emu3VisionVQTemporalUpsample(config.z_channels, config.z_channels)
self.time_conv.append(conv)
self.conv_in = nn.Conv2d(
config.z_channels,
block_in,
kernel_size=3,
stride=1,
padding=1,
)
# middle
self.mid = nn.Module()
self.mid.block_1 = Emu3VisionVQResnetBlock(
in_channels=block_in,
out_channels=block_in,
dropout=config.dropout,
zq_ch=zq_ch,
)
self.mid.attn_1 = Emu3VisionVQAttnBlock(block_in, zq_ch)
self.mid.block_2 = Emu3VisionVQResnetBlock(
in_channels=block_in,
out_channels=block_in,
dropout=config.dropout,
zq_ch=zq_ch,
)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = config.ch * config.ch_mult[i_level]
for i_block in range(self.num_res_blocks + 1):
block.append(
Emu3VisionVQResnetBlock(
in_channels=block_in,
out_channels=block_out,
dropout=config.dropout,
zq_ch=zq_ch,
)
)
block_in = block_out
if i_level in config.attn_resolutions:
attn.append(Emu3VisionVQAttnBlock(block_in, zq_ch))
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Emu3VisionVQUpsample(block_in)
self.up.insert(0, up)
self.act = Emu3VisionVQActivation()
self.norm_out = Emu3VisionVQSpatialNorm(block_in, zq_ch)
self.conv_out = nn.Conv2d(
block_in,
config.out_channels,
kernel_size=3,
stride=1,
padding=1,
)
def forward(self, z: torch.Tensor, zq: torch.Tensor):
z_zq = torch.cat((z, zq), dim=0)
z_zq = z_zq.permute(0, 2, 1, 3, 4)
z_zq = self.time_res_stack(z_zq)
for conv in self.time_conv:
z_zq = self.act(conv(z_zq))
z_zq = z_zq.permute(0, 2, 1, 3, 4)
h, zq = torch.chunk(z_zq, 2, dim=0)
h = h.reshape(-1, *h.shape[2:])
zq = zq.reshape(-1, *zq.shape[2:])
h = self.conv_in(h)
# middle
h = self.mid.block_1(h, zq)
h = self.mid.attn_1(h, zq)
h = self.mid.block_2(h, zq)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks+1):
h = self.up[i_level].block[i_block](h, zq)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h, zq)
if i_level != 0:
h = self.up[i_level].upsample(h)
h = self.norm_out(h, zq)
h = self.act(h)
h = self.conv_out(h)
return h
class Emu3VisionVQPretrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Emu3VisionVQConfig
base_model_prefix = "emuvideovq"
main_input_name = "pixel_values"
_no_split_modules = ["Emu3VisionVQResnetBlock", "Emu3VisionVQAttnBlock", "Emu3VisionVQResnetTemporalBlock"]
def _init_weights(self, module):
if isinstance(module, (nn.Conv2d, nn.Conv3d)):
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
# copied from the `reset_parameters` method of `class Linear(Module)` in `torch`.
elif isinstance(module, nn.Linear):
nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5))
if module.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
nn.init.uniform_(module.bias, -bound, bound)
elif isinstance(module, (nn.BatchNorm2d, nn.BatchNorm3d, nn.GroupNorm)):
nn.init.constant_(module.weight, 1)
nn.init.constant_(module.bias, 0)
class Emu3VisionVQModel(Emu3VisionVQPretrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.encoder = Emu3VisionVQEncoder(config)
self.decoder = Emu3VisionVQDecoder(config)
self.quantize = Emu3VisionVQVectorQuantizer(config)
self.quant_conv = Emu3VisionVQCausalConv3d(config.z_channels, config.embed_dim)
self.post_quant_conv = Emu3VisionVQCausalConv3d(config.embed_dim, config.z_channels)
self.spatial_scale_factor = 2 ** (len(config.ch_mult) - 1)
self.post_init()
def encode(self, x: torch.Tensor):
ndim = x.ndim
if ndim == 4:
t = self.config.temporal_downsample_factor
b, c, h, w = x.shape
x = x.unsqueeze(1).repeat(1, t, 1, 1, 1)
elif ndim == 5:
b, t, c, h, w = x.shape
h = self.encoder(x)
# b t c h w -> b c t h w
h = h.permute(0, 2, 1, 3, 4)
h = self.quant_conv(h)
# b c t h w -> b t c h w
h = h.permute(0, 2, 1, 3, 4)
codes = self.quantize(h)
if ndim == 4:
codes = codes.squeeze(1)
return codes
def decode(self, x: torch.Tensor):
ndim = x.ndim
if ndim == 3:
x = x.unsqueeze(1)
b, t, h, w = x.shape
quant = self.quantize.embedding(x.flatten())
c = quant.shape[-1]
quant = quant.view(b, t, h, w, c).permute(0, 4, 1, 2, 3).contiguous()
quant2 = self.post_quant_conv(quant)
quant = quant.permute(0, 2, 1, 3, 4)
quant2 = quant2.permute(0, 2, 1, 3, 4)
video = self.decoder(quant2, quant)
video = video.reshape(
b,
t * self.config.temporal_downsample_factor,
self.config.out_channels,
h * self.spatial_scale_factor,
w * self.spatial_scale_factor,
)
if ndim == 3:
return video[:, 0]
return video
@property
def device(self):
return next(self.parameters()).device
@property
def dtype(self):
return next(self.parameters()).dtype