|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Emu3VisionVQ model """ |
|
|
|
import math |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from transformers.modeling_utils import PreTrainedModel |
|
|
|
from .configuration_emu3visionvq import Emu3VisionVQConfig |
|
|
|
|
|
class Emu3VisionVQActivation(nn.Module): |
|
|
|
def __init__(self): |
|
super().__init__() |
|
|
|
def __call__(self, x: torch.Tensor): |
|
return x * torch.sigmoid(x) |
|
|
|
|
|
class Emu3VisionVQUpsample(nn.Module): |
|
|
|
def __init__(self, in_channels: int): |
|
super().__init__() |
|
self.conv = nn.Conv2d( |
|
in_channels, |
|
in_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
|
|
def forward(self, x: torch.Tensor): |
|
x = F.interpolate(x, scale_factor=2.0, mode="nearest") |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Emu3VisionVQDownsample(nn.Module): |
|
|
|
def __init__(self, in_channels: int): |
|
super().__init__() |
|
self.conv = nn.Conv2d( |
|
in_channels, |
|
in_channels, |
|
kernel_size=3, |
|
stride=2, |
|
padding=0, |
|
) |
|
|
|
def forward(self, x: torch.Tensor): |
|
pad = (0, 1, 0, 1) |
|
x = F.pad(x, pad, mode="constant", value=0) |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Emu3VisionVQCausalConv3d(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_channel: int, |
|
out_channel: int, |
|
kernel_size: Union[int, Tuple[int, ...]] = (3, 1, 1), |
|
stride: Union[int, Tuple[int, ...]] = (1, 1, 1), |
|
): |
|
super().__init__() |
|
|
|
if isinstance(kernel_size, int): |
|
kernel_size = (kernel_size,) * 3 |
|
if isinstance(stride, int): |
|
stride = (stride,) * 3 |
|
|
|
hw_pad = [k - s for k, s in zip(kernel_size[1:], stride[1:])] |
|
self.padding = tuple() |
|
for p in hw_pad[::-1]: |
|
self.padding += (p // 2 + p % 2, p // 2) |
|
self.padding += (2, 0) |
|
|
|
self.conv = nn.Conv3d( |
|
in_channel, |
|
out_channel, |
|
kernel_size, |
|
stride=stride, |
|
) |
|
|
|
def forward(self, x: torch.Tensor): |
|
x = F.pad(x, self.padding) |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Emu3VisionVQResnetTemporalBlock(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: Optional[int] = None, |
|
conv_shortcut: bool = False, |
|
dropout: float = 0.0, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
self.use_conv_shortcut = conv_shortcut |
|
|
|
stride = (1, 1, 1) |
|
kernel_size = (3, 3, 3) |
|
|
|
self.norm1 = nn.BatchNorm3d(in_channels) |
|
self.conv1 = Emu3VisionVQCausalConv3d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
) |
|
self.norm2 = nn.BatchNorm3d(out_channels) |
|
self.dropout = nn.Dropout(dropout) |
|
self.conv2 = Emu3VisionVQCausalConv3d( |
|
out_channels, |
|
out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
) |
|
self.act = Emu3VisionVQActivation() |
|
|
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
self.conv_shortcut = Emu3VisionVQCausalConv3d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
) |
|
else: |
|
self.nin_shortcut = nn.Conv3d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
) |
|
|
|
def forward(self, x: torch.Tensor): |
|
h = self.norm1(x) |
|
h = self.act(h) |
|
h = self.conv1(h) |
|
|
|
h = self.norm2(h) |
|
h = self.act(h) |
|
h = self.dropout(h) |
|
h = self.conv2(h) |
|
|
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
x = self.conv_shortcut(x) |
|
else: |
|
x = self.nin_shortcut(x) |
|
|
|
return x + h |
|
|
|
|
|
class Emu3VisionVQSpatialNorm(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
f_channels: int, |
|
zq_channels: int, |
|
norm_layer: nn.Module = nn.GroupNorm, |
|
add_conv: bool = False, |
|
num_groups: int = 32, |
|
eps: float = 1e-6, |
|
affine: bool = True, |
|
): |
|
super().__init__() |
|
self.norm_layer = norm_layer( |
|
num_channels=f_channels, |
|
num_groups=num_groups, |
|
eps=eps, |
|
affine=affine, |
|
) |
|
|
|
self.add_conv = add_conv |
|
if self.add_conv: |
|
self.conv = nn.Conv2d( |
|
zq_channels, |
|
zq_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
|
|
self.conv_y = nn.Conv2d( |
|
zq_channels, |
|
f_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
) |
|
self.conv_b = nn.Conv2d( |
|
zq_channels, |
|
f_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
) |
|
|
|
def forward(self, x: torch.Tensor, zq: torch.Tensor): |
|
zq = F.interpolate(zq, size=x.shape[-2:], mode="nearest") |
|
|
|
if self.add_conv: |
|
zq = self.conv(zq) |
|
|
|
x = self.norm_layer(x) |
|
x = x * self.conv_y(zq) + self.conv_b(zq) |
|
return x |
|
|
|
|
|
class Emu3VisionVQResnetBlock(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: Optional[int] = None, |
|
conv_shortcut: bool = False, |
|
dropout: float = 0.0, |
|
zq_ch: Optional[int] = None, |
|
add_conv: bool = False, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
self.use_conv_shortcut = conv_shortcut |
|
self.zq_ch = zq_ch |
|
|
|
if zq_ch is None: |
|
norm_kwargs = dict(num_groups=32, eps=1e-6, affine=True) |
|
self.norm1 = nn.GroupNorm(num_channels=in_channels, **norm_kwargs) |
|
self.norm2 = nn.GroupNorm(num_channels=out_channels, **norm_kwargs) |
|
else: |
|
self.norm1 = Emu3VisionVQSpatialNorm(in_channels, zq_ch, add_conv=add_conv) |
|
self.norm2 = Emu3VisionVQSpatialNorm(out_channels, zq_ch, add_conv=add_conv) |
|
|
|
self.conv1 = nn.Conv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
|
|
self.dropout = nn.Dropout(dropout) |
|
self.conv2 = nn.Conv2d( |
|
out_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
|
|
self.act = Emu3VisionVQActivation() |
|
|
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
self.conv_shortcut = nn.Conv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
else: |
|
self.nin_shortcut = nn.Conv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
) |
|
|
|
def forward(self, x: torch.Tensor, zq: Optional[torch.Tensor] = None): |
|
norm_args = tuple() if self.zq_ch is None else (zq, ) |
|
|
|
h = self.norm1(x, *norm_args) |
|
h = self.act(h) |
|
h = self.conv1(h) |
|
|
|
h = self.norm2(h, *norm_args) |
|
h = self.act(h) |
|
h = self.dropout(h) |
|
h = self.conv2(h) |
|
|
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
x = self.conv_shortcut(x) |
|
else: |
|
x = self.nin_shortcut(x) |
|
|
|
return x + h |
|
|
|
|
|
class Emu3VisionVQAttnBlock(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
zq_ch: Optional[int] = None, |
|
add_conv: bool = False |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.zq_ch = zq_ch |
|
|
|
if zq_ch is None: |
|
norm_kwargs = dict(num_groups=32, eps=1e-6, affine=True) |
|
self.norm = nn.GroupNorm(num_channels=in_channels, **norm_kwargs) |
|
else: |
|
self.norm = Emu3VisionVQSpatialNorm(in_channels, zq_ch, add_conv=add_conv) |
|
|
|
self.q = nn.Conv2d( |
|
in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
) |
|
self.k = nn.Conv2d( |
|
in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
) |
|
self.v = nn.Conv2d( |
|
in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
) |
|
self.proj_out = nn.Conv2d( |
|
in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
) |
|
|
|
def forward(self, x: torch.Tensor, zq: Optional[torch.Tensor] = None): |
|
norm_args = tuple() if self.zq_ch is None else (zq, ) |
|
|
|
nx = self.norm(x, *norm_args) |
|
q = self.q(nx) |
|
k = self.k(nx) |
|
v = self.v(nx) |
|
|
|
|
|
b, c, h, w = q.shape |
|
q = q.reshape(b, c, h * w) |
|
k = k.reshape(b, c, h * w) |
|
score = torch.bmm(q.permute(0, 2, 1), k) |
|
score = score / (c ** 0.5) |
|
score = F.softmax(score, dim=2) |
|
|
|
|
|
v = v.reshape(b, c, h * w) |
|
v = torch.bmm(v, score.permute(0, 2, 1)) |
|
v = v.reshape(b, c, h, w) |
|
|
|
v = self.proj_out(v) |
|
|
|
return x + v |
|
|
|
|
|
class Emu3VisionVQTemporalUpsample(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_channel: int, |
|
out_channel: int, |
|
kernel_size: Tuple[int, ...] = (3, 3, 3), |
|
stride: Tuple[int, ...] = (1, 1, 1) |
|
): |
|
super().__init__() |
|
self.in_channel = in_channel |
|
self.out_channel = out_channel |
|
self.conv = Emu3VisionVQCausalConv3d( |
|
in_channel, |
|
out_channel, |
|
kernel_size, |
|
stride=stride, |
|
) |
|
|
|
def forward(self, x: torch.Tensor): |
|
b, c, t, h, w = x.shape |
|
x = x.permute(0, 1, 3, 4, 2).contiguous().view(b, -1, t) |
|
x = F.interpolate(x, scale_factor=2.0, mode="nearest") |
|
x = x.view(b, c, h, w, -1).permute(0, 1, 4, 2, 3).contiguous() |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Emu3VisionVQTemporalDownsample(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_channel: int, |
|
out_channel: int, |
|
kernel_size: Tuple[int, ...] = (4, 3, 3), |
|
stride: Tuple[int, ...] = (2, 1, 1), |
|
): |
|
super().__init__() |
|
self.in_channel = in_channel |
|
self.out_channel = out_channel |
|
self.kernel_size = kernel_size |
|
|
|
self.conv = Emu3VisionVQCausalConv3d( |
|
in_channel, |
|
out_channel, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
) |
|
|
|
def forward(self, x: torch.Tensor): |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Emu3VisionVQVectorQuantizer(nn.Module): |
|
|
|
def __init__(self, config: Emu3VisionVQConfig): |
|
super().__init__() |
|
self.embedding = nn.Embedding(config.codebook_size, config.embed_dim) |
|
self.embedding.weight.data.uniform_(-1.0 / config.codebook_size, 1.0 / config.codebook_size) |
|
|
|
def forward(self, x: torch.Tensor): |
|
|
|
b, t, c, h, w = x.shape |
|
x = x.permute(0, 1, 3, 4, 2).contiguous() |
|
x_flattened = x.view(-1, c) |
|
|
|
codebook = self.embedding.weight |
|
|
|
d = torch.sum(x_flattened ** 2, dim=1, keepdim=True) + \ |
|
torch.sum(codebook ** 2, dim=1) - 2 * \ |
|
torch.einsum('bd,dn->bn', x_flattened, codebook.permute(1, 0)) |
|
|
|
indices = torch.argmin(d, dim=1) |
|
indices = indices.view(b, t, h, w) |
|
return indices |
|
|
|
|
|
class Emu3VisionVQEncoder(nn.Module): |
|
|
|
def __init__(self, config: Emu3VisionVQConfig): |
|
super().__init__() |
|
self.ch = config.ch |
|
self.num_resolutions = len(config.ch_mult) |
|
self.num_res_blocks = config.num_res_blocks |
|
self.in_channels = config.in_channels |
|
|
|
|
|
self.conv_in = nn.Conv2d( |
|
self.in_channels, |
|
self.ch, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1 |
|
) |
|
|
|
in_ch_mult = (1,) + tuple(config.ch_mult) |
|
self.down = nn.ModuleList() |
|
for i_level in range(self.num_resolutions): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_in = config.ch * in_ch_mult[i_level] |
|
block_out = config.ch * config.ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks): |
|
block.append( |
|
Emu3VisionVQResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_out, |
|
dropout=config.dropout, |
|
) |
|
) |
|
block_in = block_out |
|
if i_level in config.attn_resolutions: |
|
attn.append(Emu3VisionVQAttnBlock(block_in)) |
|
|
|
down = nn.Module() |
|
down.block = block |
|
down.attn = attn |
|
if i_level != self.num_resolutions - 1: |
|
down.downsample = Emu3VisionVQDownsample(block_in) |
|
|
|
self.down.append(down) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = Emu3VisionVQResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
dropout=config.dropout, |
|
) |
|
self.mid.attn_1 = Emu3VisionVQAttnBlock(block_in) |
|
self.mid.block_2 = Emu3VisionVQResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
dropout=config.dropout, |
|
) |
|
|
|
|
|
self.norm_out = nn.GroupNorm(num_channels=block_in, num_groups=32, eps=1e-6, affine=True) |
|
|
|
out_z_channels = 2 * config.z_channels if config.double_z else config.z_channels |
|
self.conv_out = nn.Conv2d( |
|
block_in, |
|
out_z_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
|
|
temporal_down_blocks = int(math.log2(config.temporal_downsample_factor)) |
|
self.time_conv = nn.ModuleList() |
|
|
|
for i in range(temporal_down_blocks): |
|
conv = Emu3VisionVQTemporalDownsample(out_z_channels, out_z_channels) |
|
self.time_conv.append(conv) |
|
|
|
self.time_res_stack = nn.Sequential(*[ |
|
Emu3VisionVQResnetTemporalBlock( |
|
in_channels=out_z_channels, |
|
out_channels=out_z_channels, |
|
dropout=config.dropout, |
|
) for _ in range(self.num_res_blocks) |
|
]) |
|
|
|
self.act = Emu3VisionVQActivation() |
|
|
|
def forward(self, x: torch.Tensor): |
|
t = x.shape[1] |
|
x = x.reshape(-1, *x.shape[2:]) |
|
|
|
|
|
h = self.conv_in(x) |
|
for i_level in range(self.num_resolutions): |
|
for i_block in range(self.num_res_blocks): |
|
h = self.down[i_level].block[i_block](h) |
|
if len(self.down[i_level].attn) > 0: |
|
h = self.down[i_level].attn[i_block](h) |
|
|
|
if i_level != self.num_resolutions - 1: |
|
h = self.down[i_level].downsample(h) |
|
|
|
h = self.mid.block_1(h) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h) |
|
|
|
|
|
h = self.norm_out(h) |
|
h = self.act(h) |
|
|
|
h = self.conv_out(h) |
|
|
|
h = h.reshape(-1, t, *h.shape[1:]) |
|
h = h.permute(0, 2, 1, 3, 4) |
|
|
|
for conv in self.time_conv: |
|
h = self.act(conv(h)) |
|
|
|
h = self.time_res_stack(h) |
|
h = h.permute(0, 2, 1, 3, 4) |
|
|
|
return h |
|
|
|
|
|
class Emu3VisionVQDecoder(nn.Module): |
|
|
|
def __init__(self, config: Emu3VisionVQConfig): |
|
super().__init__() |
|
self.ch = config.ch |
|
self.num_resolutions = len(config.ch_mult) |
|
self.num_res_blocks = config.num_res_blocks |
|
|
|
in_ch_mult = (1,) + tuple(config.ch_mult) |
|
zq_ch = config.embed_dim |
|
|
|
block_in = config.ch * config.ch_mult[-1] |
|
self.time_res_stack = nn.Sequential(*[ |
|
Emu3VisionVQResnetTemporalBlock( |
|
in_channels=config.z_channels, |
|
out_channels=config.z_channels, |
|
dropout=config.dropout, |
|
) for _ in range(config.num_res_blocks) |
|
]) |
|
|
|
tempo_upsample_block_num = int(math.log2(config.temporal_downsample_factor)) |
|
self.time_conv = nn.ModuleList() |
|
for i in range(tempo_upsample_block_num): |
|
conv = Emu3VisionVQTemporalUpsample(config.z_channels, config.z_channels) |
|
self.time_conv.append(conv) |
|
|
|
self.conv_in = nn.Conv2d( |
|
config.z_channels, |
|
block_in, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = Emu3VisionVQResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
dropout=config.dropout, |
|
zq_ch=zq_ch, |
|
) |
|
self.mid.attn_1 = Emu3VisionVQAttnBlock(block_in, zq_ch) |
|
self.mid.block_2 = Emu3VisionVQResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
dropout=config.dropout, |
|
zq_ch=zq_ch, |
|
) |
|
|
|
|
|
self.up = nn.ModuleList() |
|
for i_level in reversed(range(self.num_resolutions)): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_out = config.ch * config.ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks + 1): |
|
block.append( |
|
Emu3VisionVQResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_out, |
|
dropout=config.dropout, |
|
zq_ch=zq_ch, |
|
) |
|
) |
|
block_in = block_out |
|
if i_level in config.attn_resolutions: |
|
attn.append(Emu3VisionVQAttnBlock(block_in, zq_ch)) |
|
|
|
up = nn.Module() |
|
up.block = block |
|
up.attn = attn |
|
if i_level != 0: |
|
up.upsample = Emu3VisionVQUpsample(block_in) |
|
|
|
self.up.insert(0, up) |
|
|
|
self.act = Emu3VisionVQActivation() |
|
|
|
self.norm_out = Emu3VisionVQSpatialNorm(block_in, zq_ch) |
|
self.conv_out = nn.Conv2d( |
|
block_in, |
|
config.out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
|
|
def forward(self, z: torch.Tensor, zq: torch.Tensor): |
|
z_zq = torch.cat((z, zq), dim=0) |
|
z_zq = z_zq.permute(0, 2, 1, 3, 4) |
|
z_zq = self.time_res_stack(z_zq) |
|
|
|
for conv in self.time_conv: |
|
z_zq = self.act(conv(z_zq)) |
|
|
|
z_zq = z_zq.permute(0, 2, 1, 3, 4) |
|
|
|
h, zq = torch.chunk(z_zq, 2, dim=0) |
|
|
|
h = h.reshape(-1, *h.shape[2:]) |
|
zq = zq.reshape(-1, *zq.shape[2:]) |
|
|
|
h = self.conv_in(h) |
|
|
|
|
|
h = self.mid.block_1(h, zq) |
|
h = self.mid.attn_1(h, zq) |
|
h = self.mid.block_2(h, zq) |
|
|
|
|
|
for i_level in reversed(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks+1): |
|
h = self.up[i_level].block[i_block](h, zq) |
|
if len(self.up[i_level].attn) > 0: |
|
h = self.up[i_level].attn[i_block](h, zq) |
|
|
|
if i_level != 0: |
|
h = self.up[i_level].upsample(h) |
|
|
|
h = self.norm_out(h, zq) |
|
h = self.act(h) |
|
h = self.conv_out(h) |
|
|
|
return h |
|
|
|
|
|
class Emu3VisionVQPretrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = Emu3VisionVQConfig |
|
base_model_prefix = "emuvideovq" |
|
main_input_name = "pixel_values" |
|
_no_split_modules = ["Emu3VisionVQResnetBlock", "Emu3VisionVQAttnBlock", "Emu3VisionVQResnetTemporalBlock"] |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, (nn.Conv2d, nn.Conv3d)): |
|
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu") |
|
|
|
elif isinstance(module, nn.Linear): |
|
nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5)) |
|
if module.bias is not None: |
|
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight) |
|
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0 |
|
nn.init.uniform_(module.bias, -bound, bound) |
|
elif isinstance(module, (nn.BatchNorm2d, nn.BatchNorm3d, nn.GroupNorm)): |
|
nn.init.constant_(module.weight, 1) |
|
nn.init.constant_(module.bias, 0) |
|
|
|
|
|
class Emu3VisionVQModel(Emu3VisionVQPretrainedModel): |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.encoder = Emu3VisionVQEncoder(config) |
|
self.decoder = Emu3VisionVQDecoder(config) |
|
self.quantize = Emu3VisionVQVectorQuantizer(config) |
|
|
|
self.quant_conv = Emu3VisionVQCausalConv3d(config.z_channels, config.embed_dim) |
|
self.post_quant_conv = Emu3VisionVQCausalConv3d(config.embed_dim, config.z_channels) |
|
|
|
self.spatial_scale_factor = 2 ** (len(config.ch_mult) - 1) |
|
|
|
self.post_init() |
|
|
|
def encode(self, x: torch.Tensor): |
|
ndim = x.ndim |
|
if ndim == 4: |
|
t = self.config.temporal_downsample_factor |
|
b, c, h, w = x.shape |
|
x = x.unsqueeze(1).repeat(1, t, 1, 1, 1) |
|
elif ndim == 5: |
|
b, t, c, h, w = x.shape |
|
|
|
h = self.encoder(x) |
|
|
|
|
|
h = h.permute(0, 2, 1, 3, 4) |
|
h = self.quant_conv(h) |
|
|
|
h = h.permute(0, 2, 1, 3, 4) |
|
|
|
codes = self.quantize(h) |
|
|
|
if ndim == 4: |
|
codes = codes.squeeze(1) |
|
|
|
return codes |
|
|
|
def decode(self, x: torch.Tensor): |
|
ndim = x.ndim |
|
if ndim == 3: |
|
x = x.unsqueeze(1) |
|
|
|
b, t, h, w = x.shape |
|
quant = self.quantize.embedding(x.flatten()) |
|
c = quant.shape[-1] |
|
quant = quant.view(b, t, h, w, c).permute(0, 4, 1, 2, 3).contiguous() |
|
quant2 = self.post_quant_conv(quant) |
|
|
|
quant = quant.permute(0, 2, 1, 3, 4) |
|
quant2 = quant2.permute(0, 2, 1, 3, 4) |
|
|
|
video = self.decoder(quant2, quant) |
|
video = video.reshape( |
|
b, |
|
t * self.config.temporal_downsample_factor, |
|
self.config.out_channels, |
|
h * self.spatial_scale_factor, |
|
w * self.spatial_scale_factor, |
|
) |
|
if ndim == 3: |
|
return video[:, 0] |
|
return video |
|
|
|
@property |
|
def device(self): |
|
return next(self.parameters()).device |
|
|
|
@property |
|
def dtype(self): |
|
return next(self.parameters()).dtype |
|
|