BAAI
/

Emu2-Gen / multimodal_encoder /modeling_emu.py
ryanzhangfan's picture
Upload 30 files
94953a3
raw
history blame
7.09 kB
from functools import partial
from typing import List, Optional
from argparse import Namespace
import torch
from torch import nn
import torch.nn.functional as F
from transformers import PreTrainedModel, PreTrainedTokenizer
from .configuration_emu import EmuConfig
from .constants import *
from .modeling_llama import LlamaForCausalLM
from .visual import EVAVisionTransformer
class EmuPreTrainedModel(PreTrainedModel):
config_class = EmuConfig
base_model_prefix = "model"
supports_gradient_checkpointing = False
_no_split_modules = ["LlamaDecoderLayer", "Block"]
_skip_keys_device_placement = "past_key_values"
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class EmuForClsAndRegression(EmuPreTrainedModel):
def __init__(self, config):
super(EmuForClsAndRegression, self).__init__(config)
self.lm = LlamaForCausalLM(config=config)
self.lm.model.embed_tokens.padding_idx = config.pad_token_id
def get_num_layers(self):
return len(self.lm.model.layers)
class EmuModel(EmuPreTrainedModel):
def __init__(self, config):
super().__init__(config)
vision_config = Namespace(**config.vision_config)
self.visual = EVAVisionTransformer(
img_size=vision_config.image_size,
patch_size=vision_config.patch_size,
embed_dim=vision_config.width,
depth=vision_config.layers,
num_heads=vision_config.width // vision_config.head_width,
mlp_ratio=vision_config.mlp_ratio,
qkv_bias=vision_config.qkv_bias,
drop_path_rate=vision_config.drop_path_rate,
norm_layer=partial(nn.LayerNorm, eps=vision_config.layer_norm_eps),
xattn=vision_config.xattn,
postnorm=vision_config.postnorm,
)
self.decoder = EmuForClsAndRegression(config)
self.gradient_checkpointing = False
self.n_query = vision_config.n_query
self.v_query = vision_config.v_query
@property
def device(self):
return next(iter(self.parameters())).device
@property
def dtype(self):
return next(iter(self.parameters())).dtype
@torch.no_grad()
def encode_image(self, image: torch.Tensor, *, n_query=None):
n_query = n_query if n_query is not None else self.n_query
image_embeds = self.visual(image)
image_embeds = image_embeds[:, 1:, :]
b, n, c = image_embeds.shape
sqrt_n = int(n**0.5)
image_embeds = image_embeds.permute(0, 2, 1).view(b, c, sqrt_n, sqrt_n)
stride = int(sqrt_n // (n_query ** 0.5))
image_embeds = F.avg_pool2d(image_embeds, kernel_size=(stride, stride), stride=stride)
image_embeds = image_embeds.view(b, c, -1).permute(0, 2, 1).contiguous()
return image_embeds
class EmuForCausalLM(EmuPreTrainedModel):
_auto_class = "AutoModelForCausalLM"
def __init__(self, config):
super().__init__(config)
self.config = config
self.model = EmuModel(config)
# LM to EVA
self.project_down = nn.Linear(config.hidden_size, config.d_model, bias=False)
# EVA to LM
self.project_up = nn.Linear(config.d_model, config.hidden_size, bias=False)
self.n_query = self.model.n_query
self.image_placeholder = DEFAULT_IMG_TOKEN + DEFAULT_IMAGE_TOKEN * self.n_query + DEFAULT_IMG_END_TOKEN
def device(self, module=None):
if module is None:
return next(self.parameters()).device
return next(module.parameters()).device
def dtype(self, module):
if module is None:
return next(self.parameters()).dtype
return next(module.parameters()).dtype
@torch.no_grad()
def generate_image(
self,
text: List[str],
tokenizer: PreTrainedTokenizer,
image: Optional[torch.Tensor] = None,
placeholder: str = DEFAULT_IMG_PLACEHOLDER,
):
IMAGE, BOI = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_TOKEN, DEFAULT_IMG_TOKEN])
if image is not None:
prompt_image_embeds = self.model.encode_image(image)
_, _, c = prompt_image_embeds.shape
prompt_image_embeds = prompt_image_embeds.view(-1, c)
prompt_image_embeds = self.project_up(prompt_image_embeds)
text = [t.replace(placeholder, self.image_placeholder) for t in text]
target_image_embeds = None
for num_img_token in range(self.n_query):
if num_img_token == 0:
text = [f"{t}{DEFAULT_IMG_TOKEN}" for t in text]
else:
text = [f"{t}{DEFAULT_IMAGE_TOKEN}" for t in text]
inputs = tokenizer(text, padding="longest", return_tensors="pt")
device = self.device(self.model.decoder.lm.model.embed_tokens)
attention_mask = inputs.attention_mask.to(device)
input_ids = inputs.input_ids.to(device) # B x N
text_embeds = self.model.decoder.lm.model.embed_tokens(input_ids)
image_idx = (input_ids == IMAGE)
cumsum_idx = torch.flip(torch.cumsum(torch.flip(image_idx, dims=[1]), dim=1), dims=[1])
if image is not None:
prompt_idx = torch.logical_and(image_idx, cumsum_idx > num_img_token)
text_embeds[prompt_idx] = prompt_image_embeds.to(text_embeds.device)
if target_image_embeds is not None:
target_idx = torch.logical_and(image_idx, torch.logical_and(cumsum_idx > 0, cumsum_idx <= num_img_token))
text_embeds[target_idx] = self.project_up(target_image_embeds).to(text_embeds.device)
outputs = self.model.decoder.lm.model(
inputs_embeds=text_embeds,
attention_mask=attention_mask,
output_hidden_states=True,
return_dict=True,
)
image_idx = (input_ids == IMAGE) + (input_ids == BOI)
cumsum_idx = torch.flip(torch.cumsum(torch.flip(image_idx, dims=[1]), dim=1), dims=[1])
target_idx = torch.logical_and(image_idx, torch.logical_and(cumsum_idx > 0, cumsum_idx <= num_img_token+1))
hidden_states = outputs.hidden_states[-1]
target_image_embeds = hidden_states[target_idx.to(hidden_states.device)]
target_image_embeds = target_image_embeds.view(-1, target_image_embeds.shape[-1])
target_image_embeds = self.project_down(target_image_embeds)
_, C = target_image_embeds.shape
B = hidden_states.shape[0]
target_image_embeds = target_image_embeds.view(B, -1, C)
return target_image_embeds