shunxing1234
commited on
Commit
·
811643a
1
Parent(s):
f1c7f0c
Upload 2 files
Browse files- chat_test_NBCE.py +132 -0
- cyg_conversation.py +131 -0
chat_test_NBCE.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! -*- coding: utf-8 -*-
|
2 |
+
# Naive Bayes-based Context Extension (NBCE)
|
3 |
+
# 使用朴素贝叶斯增加LLM的Context处理长度
|
4 |
+
# 链接:https://kexue.fm/archives/9617
|
5 |
+
# Torch 2.0 测试通过
|
6 |
+
|
7 |
+
import json
|
8 |
+
import torch
|
9 |
+
from transformers import AutoTokenizer
|
10 |
+
from transformers import AquilaForCausalLM
|
11 |
+
from transformers import TopPLogitsWarper, LogitsProcessorList
|
12 |
+
import pdb
|
13 |
+
|
14 |
+
# 加载tokenizer
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
16 |
+
tokenizer.padding_side = 'left'
|
17 |
+
tokenizer.pad_token = tokenizer.unk_token
|
18 |
+
|
19 |
+
# 加载Aquila模型
|
20 |
+
model = AquilaForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16)
|
21 |
+
device = torch.device('cuda')
|
22 |
+
model.to(device)
|
23 |
+
# 加载示例Context
|
24 |
+
from cyg_conversation import default_conversation
|
25 |
+
|
26 |
+
conv = default_conversation.copy()
|
27 |
+
contexts = json.load(open('code_text_2.json'))
|
28 |
+
|
29 |
+
question = "请解释这段程序的功能:"
|
30 |
+
batch = []
|
31 |
+
conv.append_message(conv.roles[0], question)
|
32 |
+
conv.append_message(conv.roles[1], None)
|
33 |
+
batch.append(conv.get_prompt())
|
34 |
+
# 拼接context和question
|
35 |
+
for ci,context in enumerate(contexts):
|
36 |
+
conv1 = default_conversation.copy()
|
37 |
+
conv1.append_message(conv.roles[0], context+question)
|
38 |
+
conv1.append_message(conv.roles[1], None)
|
39 |
+
batch.append(conv1.get_prompt())
|
40 |
+
print('Context长度分布:', [len(text) for text in batch])
|
41 |
+
print('Context总长度:', sum([len(text) for text in batch]))
|
42 |
+
|
43 |
+
# Top-P截断
|
44 |
+
processors = LogitsProcessorList()
|
45 |
+
processors.append(TopPLogitsWarper(0.95))
|
46 |
+
|
47 |
+
# Copied from https://github.com/bojone/NBCE/blob/main/test.py#L51-L106
|
48 |
+
@torch.inference_mode()
|
49 |
+
def generate(max_tokens):
|
50 |
+
"""Naive Bayes-based Context Extension 演示代码
|
51 |
+
"""
|
52 |
+
inputs = tokenizer(batch, padding='longest', return_tensors='pt').to(device)
|
53 |
+
input_ids = inputs.input_ids
|
54 |
+
attention_mask = inputs.attention_mask
|
55 |
+
|
56 |
+
print('input_ids', input_ids.shape)
|
57 |
+
past_key_values = None
|
58 |
+
n = input_ids.shape[0]
|
59 |
+
|
60 |
+
for i in range(max_tokens):
|
61 |
+
# 模型输出
|
62 |
+
outputs = model(input_ids=input_ids,
|
63 |
+
attention_mask=attention_mask,
|
64 |
+
return_dict=True,
|
65 |
+
use_cache=True,
|
66 |
+
past_key_values=past_key_values
|
67 |
+
)
|
68 |
+
past_key_values = outputs.past_key_values
|
69 |
+
|
70 |
+
# ===== 核心代码开始 =====
|
71 |
+
beta, eta = 0.25, 0.1
|
72 |
+
logits = outputs.logits[:, -1]
|
73 |
+
logits = logits - logits.logsumexp(dim=-1, keepdims=True)
|
74 |
+
logits = processors(input_ids, logits)
|
75 |
+
entropy = -(logits.exp() * logits.clip(-100, 0)).sum(dim=-1)
|
76 |
+
if i > 0:
|
77 |
+
entropy[k] -= eta
|
78 |
+
k = entropy[1:].argmin() + 1
|
79 |
+
logits_max = logits[k]
|
80 |
+
logits_uncond = logits[0]
|
81 |
+
logits_merged = (1 + beta) * logits_max - beta * logits_uncond
|
82 |
+
logits = torch.where(logits_uncond > -100, logits_merged, logits_max)
|
83 |
+
# ===== 核心代码结束 =====
|
84 |
+
|
85 |
+
# 构建分布,采样
|
86 |
+
# tau = 1是标准的随机采样,tau->0则是贪心搜索
|
87 |
+
# 简单起见,这里没有实现topk、topp截断
|
88 |
+
tau = 0.01
|
89 |
+
probas = torch.nn.functional.softmax(logits[None] / tau , dim=-1)
|
90 |
+
next_tokens = torch.multinomial(probas, num_samples=1).squeeze(1)
|
91 |
+
if next_tokens[0] == tokenizer.eos_token_id:
|
92 |
+
break
|
93 |
+
|
94 |
+
ret = tokenizer.batch_decode(next_tokens)
|
95 |
+
print(ret[0], flush=True, end='')
|
96 |
+
|
97 |
+
# prepare for next iteration
|
98 |
+
input_ids = next_tokens.unsqueeze(-1).tile(n, 1)
|
99 |
+
attention_mask = torch.cat([attention_mask, torch.ones(n, 1, dtype=torch.long, device=device)], dim=-1)
|
100 |
+
|
101 |
+
|
102 |
+
if __name__ == '__main__':
|
103 |
+
generate(1000)
|
104 |
+
|
105 |
+
|
106 |
+
"""
|
107 |
+
========= 输出结果参考 =========
|
108 |
+
|
109 |
+
1.菲律宾国家电网公司,中国占股多少?
|
110 |
+
答:中国国家电网公司持有菲律宾国家电网公司40%的股份。
|
111 |
+
|
112 |
+
2.领英计划裁员多少人?
|
113 |
+
答:领英计划裁员716人。
|
114 |
+
|
115 |
+
3.吉利德收购Pharmasset的价格是多少?
|
116 |
+
答:吉利德收购Pharmasset的价格为110亿美元。
|
117 |
+
|
118 |
+
4.丙肝神药Sovaldi在哪一年上市?
|
119 |
+
答:丙肝神药Sovaldi于2013年上市。
|
120 |
+
|
121 |
+
5.中亚峰会将在哪里举行?由谁主持?
|
122 |
+
答:中亚峰会将在陕西省西安市举行,由国家主席习近平主持。
|
123 |
+
|
124 |
+
6.哪个演员由于侮辱人民军队而被立案调查?
|
125 |
+
答:李昊石因在表演中存在侮辱人民军队的言论而被立案调查。
|
126 |
+
|
127 |
+
7.哪个项目宣称“能过坦克”的水上道路?
|
128 |
+
答:湖北恩施宣称的“能过坦克”水上道路。
|
129 |
+
|
130 |
+
8.如果你是默沙东的CEO,你的首要任务是什么?
|
131 |
+
答:如果我是默沙东的CEO,我的首要任务是如何让基本盘更加坚固,并通过药物联用获得更好的增长。
|
132 |
+
"""
|
cyg_conversation.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
from enum import auto, Enum
|
3 |
+
from typing import List, Tuple, Any
|
4 |
+
|
5 |
+
|
6 |
+
class SeparatorStyle(Enum):
|
7 |
+
"""Different separator style."""
|
8 |
+
SINGLE = auto()
|
9 |
+
TWO = auto()
|
10 |
+
|
11 |
+
|
12 |
+
@dataclasses.dataclass
|
13 |
+
class Conversation:
|
14 |
+
"""A class that keeps all conversation history."""
|
15 |
+
system: str
|
16 |
+
instruction: str
|
17 |
+
roles: List[str]
|
18 |
+
messages: List[List[str]]
|
19 |
+
offset: int
|
20 |
+
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
21 |
+
sep: str = "###"
|
22 |
+
sep2: str = None
|
23 |
+
|
24 |
+
skip_next: bool = False
|
25 |
+
conv_id: Any = None
|
26 |
+
|
27 |
+
def get_prompt(self):
|
28 |
+
if self.sep_style == SeparatorStyle.SINGLE:
|
29 |
+
ret = self.system + self.sep
|
30 |
+
if self.instruction is not None and len(self.instruction) > 0:
|
31 |
+
ret += self.roles[2] + ": " + self.instruction + self.sep
|
32 |
+
for role, message in self.messages:
|
33 |
+
if message:
|
34 |
+
ret += role + ": " + message + self.sep
|
35 |
+
else:
|
36 |
+
ret += role + ":"
|
37 |
+
return ret
|
38 |
+
elif self.sep_style == SeparatorStyle.TWO:
|
39 |
+
seps = [self.sep, self.sep2]
|
40 |
+
ret = self.system + seps[0]
|
41 |
+
if self.instruction is not None and len(self.instruction) > 0:
|
42 |
+
ret += self.roles[2] + ": " + self.instruction + self.sep
|
43 |
+
for i, (role, message) in enumerate(self.messages):
|
44 |
+
if message:
|
45 |
+
ret += role + ": " + message + seps[i % 2]
|
46 |
+
else:
|
47 |
+
ret += role + ":"
|
48 |
+
return ret
|
49 |
+
else:
|
50 |
+
raise ValueError(f"Invalid style: {self.sep_style}")
|
51 |
+
|
52 |
+
def append_message(self, role, message):
|
53 |
+
self.messages.append([role, message])
|
54 |
+
|
55 |
+
def to_gradio_chatbot(self):
|
56 |
+
ret = []
|
57 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
58 |
+
if i % 2 == 0:
|
59 |
+
ret.append([msg, None])
|
60 |
+
else:
|
61 |
+
ret[-1][-1] = msg
|
62 |
+
return ret
|
63 |
+
|
64 |
+
def copy(self):
|
65 |
+
return Conversation(
|
66 |
+
system=self.system,
|
67 |
+
instruction=self.instruction,
|
68 |
+
roles=self.roles,
|
69 |
+
messages=[[x, y] for x, y in self.messages],
|
70 |
+
offset=self.offset,
|
71 |
+
sep_style=self.sep_style,
|
72 |
+
sep=self.sep,
|
73 |
+
sep2=self.sep2,
|
74 |
+
conv_id=self.conv_id)
|
75 |
+
|
76 |
+
def dict(self):
|
77 |
+
return {
|
78 |
+
"system": self.system,
|
79 |
+
"instruction": self.instruction,
|
80 |
+
"roles": self.roles,
|
81 |
+
"messages": self.messages,
|
82 |
+
"offset": self.offset,
|
83 |
+
"sep": self.sep,
|
84 |
+
"sep2": self.sep2,
|
85 |
+
"conv_id": self.conv_id,
|
86 |
+
}
|
87 |
+
|
88 |
+
|
89 |
+
conv_v1 = Conversation(
|
90 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
91 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
92 |
+
instruction="",
|
93 |
+
roles=("Human", "Assistant", "System"),
|
94 |
+
messages=(),
|
95 |
+
offset=0,
|
96 |
+
sep_style=SeparatorStyle.SINGLE,
|
97 |
+
sep="###",
|
98 |
+
)
|
99 |
+
|
100 |
+
conv_v1_2 = Conversation(
|
101 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
102 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
103 |
+
instruction="",
|
104 |
+
roles=("Human", "Assistant", "System"),
|
105 |
+
messages=(),
|
106 |
+
offset=0,
|
107 |
+
sep_style=SeparatorStyle.SINGLE,
|
108 |
+
sep="###",
|
109 |
+
)
|
110 |
+
|
111 |
+
conv_bair_v1 = Conversation(
|
112 |
+
system="BEGINNING OF CONVERSATION:",
|
113 |
+
instruction="",
|
114 |
+
roles=("USER", "GPT", "System"),
|
115 |
+
messages=(),
|
116 |
+
offset=0,
|
117 |
+
sep_style=SeparatorStyle.TWO,
|
118 |
+
sep=" ",
|
119 |
+
sep2="</s>",
|
120 |
+
)
|
121 |
+
|
122 |
+
|
123 |
+
default_conversation = conv_v1_2
|
124 |
+
conv_templates = {
|
125 |
+
"v1": conv_v1_2,
|
126 |
+
"bair_v1": conv_bair_v1,
|
127 |
+
}
|
128 |
+
|
129 |
+
|
130 |
+
if __name__ == "__main__":
|
131 |
+
print(default_conversation.get_prompt())
|