Avval commited on
Commit
78b0f63
1 Parent(s): 14c2101

PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 242.47 +/- 81.72
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f738dfafca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f738dfafd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f738dfafdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f738dfafe50>", "_build": "<function ActorCriticPolicy._build at 0x7f738dfafee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f738dfaff70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f738dfb4040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f738dfb40d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f738dfb4160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f738dfb41f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f738dfb4280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f738dfb4310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f738dfb29c0>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680631849410420816, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPNe7b0lMCk+3UJtvM8uZL5upBa9pWNruwAAAAAAAAAAU34GPsyKkD7M9Zi91HhDvmkgHDuGcfi8AAAAAAAAAAANFQw+ZrzFPq31EbwOvou+NagBPfKrN70AAAAAAAAAAKhphr4tSBM/EnAEPvmZob5NeZW9MQqbPQAAAAAAAAAAGppIvXuwgLpy2as8vojkPM5kAbtXxMI9AACAPwAAgD9Tch8+9LWhvGJKD75UGS49ZYoUvmcoCD4AAIA/AACAP7PrZD2uaYC6Uz2FNbECDzBMeks6T0WztAAAgD8AAIA/s/ITvZqxhD6qZJI9Z9BwvpjD4TymMdC8AAAAAAAAAADNgFi9FEWyPvbRzbws8Zy+6AOVvN6BszwAAAAAAAAAAM2qt7wVdgg+BcFmvfK1J76BURK8wwKEuwAAAAAAAAAAjd/dPYrmPDykVSW+BErXvZaY+buwO9e8AAAAAAAAAABGEkW+6IWsvAaTQjwUFOQ8QtQDPnj/kD0AAIA/AACAPxo5qr3DIXG6CswDucFLCLTp9I86O7oaOAAAgD8AAIA/gMVvPaeEmz/Ciqw+9pwXvxXFez0BDg8+AAAAAAAAAAD6po6+5gMkP/Uw0TxOrbS+tEFFvg3pcj4AAAAAAAAAACq1hL5ZPFs/py4GPmZlur6NH32+VJubPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqfkq+dghckCUhpRSlIwBbJRNFQGMAXSUR0CWpg/hESdwdX2UKGgGaAloD0MIV+4FZsVccUCUhpRSlGgVS/JoFkdAlqYzpC8e0XV9lChoBmgJaA9DCCU9DK1OKW1AlIaUUpRoFUv3aBZHQJamS7Ciypt1fZQoaAZoCWgPQwhCsRU0LatxQJSGlFKUaBVNIgFoFkdAlqal/QSi/XV9lChoBmgJaA9DCBwkRPmCuW1AlIaUUpRoFU0YAWgWR0CWpuPIGQjmdX2UKGgGaAloD0MImpfD7nuEcECUhpRSlGgVTSQBaBZHQJam53aBZp11fZQoaAZoCWgPQwiNJEG4wopxQJSGlFKUaBVNBwFoFkdAlqhj6JqIrXV9lChoBmgJaA9DCJwYkpOJbG5AlIaUUpRoFU0PAWgWR0CWqKsr/bTMdX2UKGgGaAloD0MIUWhZ94+gbECUhpRSlGgVS/doFkdAlqklCojv/nV9lChoBmgJaA9DCLiVXpsNh25AlIaUUpRoFUv4aBZHQJapQV8CxNZ1fZQoaAZoCWgPQwhzgGCO3t5wQJSGlFKUaBVNFwFoFkdAlqulwgkkbHV9lChoBmgJaA9DCCwtI/WeMnFAlIaUUpRoFU0WAWgWR0CWq+TkyULVdX2UKGgGaAloD0MInWaBdodebECUhpRSlGgVTQcBaBZHQJatHF98Z1p1fZQoaAZoCWgPQwjTg4JSdNdxQJSGlFKUaBVL8mgWR0CWrXovBacJdX2UKGgGaAloD0MIAYV6+giDbkCUhpRSlGgVS/5oFkdAlq4BSk0rLHV9lChoBmgJaA9DCEZEMXnDsHBAlIaUUpRoFUv0aBZHQJauYrFwT/R1fZQoaAZoCWgPQwg/i6VIvjtxQJSGlFKUaBVNKAFoFkdAlq839BKL9HV9lChoBmgJaA9DCOChKNBnknBAlIaUUpRoFU0WAWgWR0CWr0OzY287dX2UKGgGaAloD0MIRwTj4NLMb0CUhpRSlGgVTR4BaBZHQJavym1pj+d1fZQoaAZoCWgPQwjKwWwCTO5yQJSGlFKUaBVL8WgWR0CWsG7OVxCIdX2UKGgGaAloD0MIfjmzXWHlcUCUhpRSlGgVTQoBaBZHQJax1SjxkNF1fZQoaAZoCWgPQwgEPdS24UtxQJSGlFKUaBVNDQFoFkdAlrIUi2UjcHV9lChoBmgJaA9DCB41JsTcPGxAlIaUUpRoFU09AWgWR0CWsradc0LudX2UKGgGaAloD0MIYYpyafzCEMCUhpRSlGgVS91oFkdAlrT+JUHY6HV9lChoBmgJaA9DCB0hA3l2mXBAlIaUUpRoFU0hAWgWR0CWtd912aDxdX2UKGgGaAloD0MIH7+36c85b0CUhpRSlGgVTUkBaBZHQJa3HYTTOPh1fZQoaAZoCWgPQwiuSExQA1xyQJSGlFKUaBVL/GgWR0CWtyjjaPCEdX2UKGgGaAloD0MIMjuL3qkdbkCUhpRSlGgVTQgBaBZHQJa3M1IiC8R1fZQoaAZoCWgPQwga3xeXqhQaQJSGlFKUaBVL6GgWR0CWt1j0L+gldX2UKGgGaAloD0MIbjMV4pH3X0CUhpRSlGgVTegDaBZHQJa388+zMRp1fZQoaAZoCWgPQwjCacGLPk9uQJSGlFKUaBVNAAFoFkdAlrgdAC4jKXV9lChoBmgJaA9DCCMw1jewIG9AlIaUUpRoFUv+aBZHQJa4rd69kBl1fZQoaAZoCWgPQwguAmN9A+dFQJSGlFKUaBVLxGgWR0CWuMu8K5TZdX2UKGgGaAloD0MIVwbVBmeGcECUhpRSlGgVTSMBaBZHQJa6ho8IRiB1fZQoaAZoCWgPQwgixmte1YtuQJSGlFKUaBVNCwFoFkdAlrteiFj/dnV9lChoBmgJaA9DCGA97lttpHFAlIaUUpRoFU0HAWgWR0CWu9vgWJrMdX2UKGgGaAloD0MIYAMixJVJbkCUhpRSlGgVTQQBaBZHQJa+WLm6oVF1fZQoaAZoCWgPQwhv1ArTN/lwQJSGlFKUaBVNCAFoFkdAlr/9KEnLJXV9lChoBmgJaA9DCII5evxe1WxAlIaUUpRoFUv2aBZHQJbA4cU/OdJ1fZQoaAZoCWgPQwiqSfCG9IRyQJSGlFKUaBVL/mgWR0CWwX/GEPDpdX2UKGgGaAloD0MIxcvTuaKoYUCUhpRSlGgVTegDaBZHQJbDWzru6Vd1fZQoaAZoCWgPQwhiSbn7nHxtQJSGlFKUaBVL9WgWR0CWw3mVJL/TdX2UKGgGaAloD0MIy6Da4IRLckCUhpRSlGgVTQ8BaBZHQJbxpJI1+Ap1fZQoaAZoCWgPQwg1lrA2xttuQJSGlFKUaBVNAgFoFkdAlvHfYWcjJXV9lChoBmgJaA9DCIXukjgrIXJAlIaUUpRoFU0xAWgWR0CW8dxn3+MqdX2UKGgGaAloD0MI48RXOwqScUCUhpRSlGgVTTABaBZHQJbx/MGHHm11fZQoaAZoCWgPQwhvK702G2ZwQJSGlFKUaBVNNgFoFkdAlvLAA+6iCnV9lChoBmgJaA9DCBReglMfMDfAlIaUUpRoFUv5aBZHQJbzQD8tPHl1fZQoaAZoCWgPQwhqMuNt5ZlwQJSGlFKUaBVNJQFoFkdAlvVfWcz68HV9lChoBmgJaA9DCB7cnbUbInFAlIaUUpRoFU0fAWgWR0CW9azUqhDgdX2UKGgGaAloD0MIoP1IEZloY0CUhpRSlGgVTegDaBZHQJb2E6DGtIV1fZQoaAZoCWgPQwiyLm6jgRhxQJSGlFKUaBVL8WgWR0CW9jyS3b22dX2UKGgGaAloD0MIUcHhBVGecECUhpRSlGgVTRcBaBZHQJb4Oohpxm11fZQoaAZoCWgPQwhDG4ANiDAqQJSGlFKUaBVL5mgWR0CW+RGJemeldX2UKGgGaAloD0MIZM4z9uUDckCUhpRSlGgVTSIBaBZHQJb5azhP0qZ1fZQoaAZoCWgPQwgp6sw9pJBsQJSGlFKUaBVL92gWR0CW+kof0VafdX2UKGgGaAloD0MIfnA+dayJckCUhpRSlGgVTRIBaBZHQJb6x3HJcPh1fZQoaAZoCWgPQwg+A+rNaINzQJSGlFKUaBVNAQFoFkdAlvrGbLEDQ3V9lChoBmgJaA9DCG11OSVgpHFAlIaUUpRoFU08AWgWR0CW+ywco6S1dX2UKGgGaAloD0MI5KCEmfbdcECUhpRSlGgVTRYBaBZHQJb71rEcbR51fZQoaAZoCWgPQwi7Cik/aWpyQJSGlFKUaBVNPAFoFkdAlvx1vddmhHV9lChoBmgJaA9DCLWn5JzY1nFAlIaUUpRoFU0KAWgWR0CW/PqsEJSjdX2UKGgGaAloD0MI4qsdxblsb0CUhpRSlGgVTSMBaBZHQJb9WWw/xDt1fZQoaAZoCWgPQwhnRGlv8GlEQJSGlFKUaBVL5GgWR0CW/2H/cWTHdX2UKGgGaAloD0MIqvOo+H+BcUCUhpRSlGgVTQcBaBZHQJb/xyq+8Gt1fZQoaAZoCWgPQwh0fR8OktZtQJSGlFKUaBVL/mgWR0CXADxuKoAGdX2UKGgGaAloD0MILXk8LT/vXkCUhpRSlGgVTegDaBZHQJcBCgJ1JUZ1fZQoaAZoCWgPQwiOlC2SNgNxQJSGlFKUaBVNLQFoFkdAlwGzfixVyXV9lChoBmgJaA9DCFluaTWk1G9AlIaUUpRoFU0QAWgWR0CXBDr/KhcrdX2UKGgGaAloD0MIB3qobUOWb0CUhpRSlGgVTQEBaBZHQJcEymYSg5B1fZQoaAZoCWgPQwhKCFbVy9VwQJSGlFKUaBVNFgFoFkdAlwWLCFbml3V9lChoBmgJaA9DCKDiOPDq0W1AlIaUUpRoFU0SAWgWR0CXBoe9zwMIdX2UKGgGaAloD0MIoS3nUpzocECUhpRSlGgVTRYBaBZHQJcHM4rBj4J1fZQoaAZoCWgPQwj/PXjtUoJvQJSGlFKUaBVNEwFoFkdAlwd9xp+MInV9lChoBmgJaA9DCE5fz9dsbHBAlIaUUpRoFUvuaBZHQJcH0gdOqNp1fZQoaAZoCWgPQwjicyfY/yNsQJSGlFKUaBVNJgFoFkdAlwfyrLhaT3V9lChoBmgJaA9DCHyb/uyHK3JAlIaUUpRoFU0hAWgWR0CXCVIbOu7pdX2UKGgGaAloD0MIaxFRTN5MckCUhpRSlGgVTTIBaBZHQJcJZw2l2vB1fZQoaAZoCWgPQwh3ZKw2f/tsQJSGlFKUaBVNJwFoFkdAlwp/8l5WzXV9lChoBmgJaA9DCHgJTn2gcHBAlIaUUpRoFU0VAWgWR0CXC8BLf1pTdX2UKGgGaAloD0MIvk9VoYGscUCUhpRSlGgVTQwBaBZHQJcLzo4dZJV1fZQoaAZoCWgPQwh6/Ul8bjxwQJSGlFKUaBVL+GgWR0CXDC5NXYDldX2UKGgGaAloD0MIhgSMLi92cUCUhpRSlGgVTRMBaBZHQJcMduhsZYR1fZQoaAZoCWgPQwieJF0zOSlxQJSGlFKUaBVL+GgWR0CXDf7Z39rHdX2UKGgGaAloD0MI598u+3UzcECUhpRSlGgVS/9oFkdAlw6zOkcjq3V9lChoBmgJaA9DCKrXLQKjhnFAlIaUUpRoFU0hAWgWR0CXDvood+5OdX2UKGgGaAloD0MIrg6AuCsVcECUhpRSlGgVTZEBaBZHQJcPDNVzZHx1fZQoaAZoCWgPQwgSMpBn1ypwQJSGlFKUaBVNBAFoFkdAlw9p5zHS4XV9lChoBmgJaA9DCF68H7df7G5AlIaUUpRoFU0OAWgWR0CXEApzcRDkdX2UKGgGaAloD0MIkfEolfDGb0CUhpRSlGgVTQQBaBZHQJcQOjDbah91fZQoaAZoCWgPQwiMKy6Oyk9yQJSGlFKUaBVNDwFoFkdAlxA9ld1Md3V9lChoBmgJaA9DCGdjJeZZ5W9AlIaUUpRoFU0kAWgWR0CXEPijL0SRdX2UKGgGaAloD0MIZOjYQaXqcUCUhpRSlGgVS/poFkdAlxGdPHktE3V9lChoBmgJaA9DCNXo1QBliHBAlIaUUpRoFU0fAWgWR0CXEe05U96kdX2UKGgGaAloD0MI/aAuUqg3cECUhpRSlGgVTSMBaBZHQJcR/huO0b91fZQoaAZoCWgPQwjyXUpdMtJtQJSGlFKUaBVL+GgWR0CXErCj1wo9dX2UKGgGaAloD0MISpUoe0vqcUCUhpRSlGgVTQwBaBZHQJcTKZw4sEt1fZQoaAZoCWgPQwgsnnqkQVxxQJSGlFKUaBVL+2gWR0CXE3CiAUcodX2UKGgGaAloD0MIY7ZkVYSJbkCUhpRSlGgVTRABaBZHQJcTtLf1pTN1fZQoaAZoCWgPQwgno8ow7oRxQJSGlFKUaBVNCQFoFkdAlxVBx1gYxnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a19cde0c2a29e7ee0b6e7ce74421e47de3d7d79faa9f9f2438fce93411540762
3
+ size 147391
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f738dfafca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f738dfafd30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f738dfafdc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f738dfafe50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f738dfafee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f738dfaff70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f738dfb4040>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f738dfb40d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f738dfb4160>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f738dfb41f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f738dfb4280>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f738dfb4310>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f738dfb29c0>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1680631849410420816,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPNe7b0lMCk+3UJtvM8uZL5upBa9pWNruwAAAAAAAAAAU34GPsyKkD7M9Zi91HhDvmkgHDuGcfi8AAAAAAAAAAANFQw+ZrzFPq31EbwOvou+NagBPfKrN70AAAAAAAAAAKhphr4tSBM/EnAEPvmZob5NeZW9MQqbPQAAAAAAAAAAGppIvXuwgLpy2as8vojkPM5kAbtXxMI9AACAPwAAgD9Tch8+9LWhvGJKD75UGS49ZYoUvmcoCD4AAIA/AACAP7PrZD2uaYC6Uz2FNbECDzBMeks6T0WztAAAgD8AAIA/s/ITvZqxhD6qZJI9Z9BwvpjD4TymMdC8AAAAAAAAAADNgFi9FEWyPvbRzbws8Zy+6AOVvN6BszwAAAAAAAAAAM2qt7wVdgg+BcFmvfK1J76BURK8wwKEuwAAAAAAAAAAjd/dPYrmPDykVSW+BErXvZaY+buwO9e8AAAAAAAAAABGEkW+6IWsvAaTQjwUFOQ8QtQDPnj/kD0AAIA/AACAPxo5qr3DIXG6CswDucFLCLTp9I86O7oaOAAAgD8AAIA/gMVvPaeEmz/Ciqw+9pwXvxXFez0BDg8+AAAAAAAAAAD6po6+5gMkP/Uw0TxOrbS+tEFFvg3pcj4AAAAAAAAAACq1hL5ZPFs/py4GPmZlur6NH32+VJubPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVZBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqfkq+dghckCUhpRSlIwBbJRNFQGMAXSUR0CWpg/hESdwdX2UKGgGaAloD0MIV+4FZsVccUCUhpRSlGgVS/JoFkdAlqYzpC8e0XV9lChoBmgJaA9DCCU9DK1OKW1AlIaUUpRoFUv3aBZHQJamS7Ciypt1fZQoaAZoCWgPQwhCsRU0LatxQJSGlFKUaBVNIgFoFkdAlqal/QSi/XV9lChoBmgJaA9DCBwkRPmCuW1AlIaUUpRoFU0YAWgWR0CWpuPIGQjmdX2UKGgGaAloD0MImpfD7nuEcECUhpRSlGgVTSQBaBZHQJam53aBZp11fZQoaAZoCWgPQwiNJEG4wopxQJSGlFKUaBVNBwFoFkdAlqhj6JqIrXV9lChoBmgJaA9DCJwYkpOJbG5AlIaUUpRoFU0PAWgWR0CWqKsr/bTMdX2UKGgGaAloD0MIUWhZ94+gbECUhpRSlGgVS/doFkdAlqklCojv/nV9lChoBmgJaA9DCLiVXpsNh25AlIaUUpRoFUv4aBZHQJapQV8CxNZ1fZQoaAZoCWgPQwhzgGCO3t5wQJSGlFKUaBVNFwFoFkdAlqulwgkkbHV9lChoBmgJaA9DCCwtI/WeMnFAlIaUUpRoFU0WAWgWR0CWq+TkyULVdX2UKGgGaAloD0MInWaBdodebECUhpRSlGgVTQcBaBZHQJatHF98Z1p1fZQoaAZoCWgPQwjTg4JSdNdxQJSGlFKUaBVL8mgWR0CWrXovBacJdX2UKGgGaAloD0MIAYV6+giDbkCUhpRSlGgVS/5oFkdAlq4BSk0rLHV9lChoBmgJaA9DCEZEMXnDsHBAlIaUUpRoFUv0aBZHQJauYrFwT/R1fZQoaAZoCWgPQwg/i6VIvjtxQJSGlFKUaBVNKAFoFkdAlq839BKL9HV9lChoBmgJaA9DCOChKNBnknBAlIaUUpRoFU0WAWgWR0CWr0OzY287dX2UKGgGaAloD0MIRwTj4NLMb0CUhpRSlGgVTR4BaBZHQJavym1pj+d1fZQoaAZoCWgPQwjKwWwCTO5yQJSGlFKUaBVL8WgWR0CWsG7OVxCIdX2UKGgGaAloD0MIfjmzXWHlcUCUhpRSlGgVTQoBaBZHQJax1SjxkNF1fZQoaAZoCWgPQwgEPdS24UtxQJSGlFKUaBVNDQFoFkdAlrIUi2UjcHV9lChoBmgJaA9DCB41JsTcPGxAlIaUUpRoFU09AWgWR0CWsradc0LudX2UKGgGaAloD0MIYYpyafzCEMCUhpRSlGgVS91oFkdAlrT+JUHY6HV9lChoBmgJaA9DCB0hA3l2mXBAlIaUUpRoFU0hAWgWR0CWtd912aDxdX2UKGgGaAloD0MIH7+36c85b0CUhpRSlGgVTUkBaBZHQJa3HYTTOPh1fZQoaAZoCWgPQwiuSExQA1xyQJSGlFKUaBVL/GgWR0CWtyjjaPCEdX2UKGgGaAloD0MIMjuL3qkdbkCUhpRSlGgVTQgBaBZHQJa3M1IiC8R1fZQoaAZoCWgPQwga3xeXqhQaQJSGlFKUaBVL6GgWR0CWt1j0L+gldX2UKGgGaAloD0MIbjMV4pH3X0CUhpRSlGgVTegDaBZHQJa388+zMRp1fZQoaAZoCWgPQwjCacGLPk9uQJSGlFKUaBVNAAFoFkdAlrgdAC4jKXV9lChoBmgJaA9DCCMw1jewIG9AlIaUUpRoFUv+aBZHQJa4rd69kBl1fZQoaAZoCWgPQwguAmN9A+dFQJSGlFKUaBVLxGgWR0CWuMu8K5TZdX2UKGgGaAloD0MIVwbVBmeGcECUhpRSlGgVTSMBaBZHQJa6ho8IRiB1fZQoaAZoCWgPQwgixmte1YtuQJSGlFKUaBVNCwFoFkdAlrteiFj/dnV9lChoBmgJaA9DCGA97lttpHFAlIaUUpRoFU0HAWgWR0CWu9vgWJrMdX2UKGgGaAloD0MIYAMixJVJbkCUhpRSlGgVTQQBaBZHQJa+WLm6oVF1fZQoaAZoCWgPQwhv1ArTN/lwQJSGlFKUaBVNCAFoFkdAlr/9KEnLJXV9lChoBmgJaA9DCII5evxe1WxAlIaUUpRoFUv2aBZHQJbA4cU/OdJ1fZQoaAZoCWgPQwiqSfCG9IRyQJSGlFKUaBVL/mgWR0CWwX/GEPDpdX2UKGgGaAloD0MIxcvTuaKoYUCUhpRSlGgVTegDaBZHQJbDWzru6Vd1fZQoaAZoCWgPQwhiSbn7nHxtQJSGlFKUaBVL9WgWR0CWw3mVJL/TdX2UKGgGaAloD0MIy6Da4IRLckCUhpRSlGgVTQ8BaBZHQJbxpJI1+Ap1fZQoaAZoCWgPQwg1lrA2xttuQJSGlFKUaBVNAgFoFkdAlvHfYWcjJXV9lChoBmgJaA9DCIXukjgrIXJAlIaUUpRoFU0xAWgWR0CW8dxn3+MqdX2UKGgGaAloD0MI48RXOwqScUCUhpRSlGgVTTABaBZHQJbx/MGHHm11fZQoaAZoCWgPQwhvK702G2ZwQJSGlFKUaBVNNgFoFkdAlvLAA+6iCnV9lChoBmgJaA9DCBReglMfMDfAlIaUUpRoFUv5aBZHQJbzQD8tPHl1fZQoaAZoCWgPQwhqMuNt5ZlwQJSGlFKUaBVNJQFoFkdAlvVfWcz68HV9lChoBmgJaA9DCB7cnbUbInFAlIaUUpRoFU0fAWgWR0CW9azUqhDgdX2UKGgGaAloD0MIoP1IEZloY0CUhpRSlGgVTegDaBZHQJb2E6DGtIV1fZQoaAZoCWgPQwiyLm6jgRhxQJSGlFKUaBVL8WgWR0CW9jyS3b22dX2UKGgGaAloD0MIUcHhBVGecECUhpRSlGgVTRcBaBZHQJb4Oohpxm11fZQoaAZoCWgPQwhDG4ANiDAqQJSGlFKUaBVL5mgWR0CW+RGJemeldX2UKGgGaAloD0MIZM4z9uUDckCUhpRSlGgVTSIBaBZHQJb5azhP0qZ1fZQoaAZoCWgPQwgp6sw9pJBsQJSGlFKUaBVL92gWR0CW+kof0VafdX2UKGgGaAloD0MIfnA+dayJckCUhpRSlGgVTRIBaBZHQJb6x3HJcPh1fZQoaAZoCWgPQwg+A+rNaINzQJSGlFKUaBVNAQFoFkdAlvrGbLEDQ3V9lChoBmgJaA9DCG11OSVgpHFAlIaUUpRoFU08AWgWR0CW+ywco6S1dX2UKGgGaAloD0MI5KCEmfbdcECUhpRSlGgVTRYBaBZHQJb71rEcbR51fZQoaAZoCWgPQwi7Cik/aWpyQJSGlFKUaBVNPAFoFkdAlvx1vddmhHV9lChoBmgJaA9DCLWn5JzY1nFAlIaUUpRoFU0KAWgWR0CW/PqsEJSjdX2UKGgGaAloD0MI4qsdxblsb0CUhpRSlGgVTSMBaBZHQJb9WWw/xDt1fZQoaAZoCWgPQwhnRGlv8GlEQJSGlFKUaBVL5GgWR0CW/2H/cWTHdX2UKGgGaAloD0MIqvOo+H+BcUCUhpRSlGgVTQcBaBZHQJb/xyq+8Gt1fZQoaAZoCWgPQwh0fR8OktZtQJSGlFKUaBVL/mgWR0CXADxuKoAGdX2UKGgGaAloD0MILXk8LT/vXkCUhpRSlGgVTegDaBZHQJcBCgJ1JUZ1fZQoaAZoCWgPQwiOlC2SNgNxQJSGlFKUaBVNLQFoFkdAlwGzfixVyXV9lChoBmgJaA9DCFluaTWk1G9AlIaUUpRoFU0QAWgWR0CXBDr/KhcrdX2UKGgGaAloD0MIB3qobUOWb0CUhpRSlGgVTQEBaBZHQJcEymYSg5B1fZQoaAZoCWgPQwhKCFbVy9VwQJSGlFKUaBVNFgFoFkdAlwWLCFbml3V9lChoBmgJaA9DCKDiOPDq0W1AlIaUUpRoFU0SAWgWR0CXBoe9zwMIdX2UKGgGaAloD0MIoS3nUpzocECUhpRSlGgVTRYBaBZHQJcHM4rBj4J1fZQoaAZoCWgPQwj/PXjtUoJvQJSGlFKUaBVNEwFoFkdAlwd9xp+MInV9lChoBmgJaA9DCE5fz9dsbHBAlIaUUpRoFUvuaBZHQJcH0gdOqNp1fZQoaAZoCWgPQwjicyfY/yNsQJSGlFKUaBVNJgFoFkdAlwfyrLhaT3V9lChoBmgJaA9DCHyb/uyHK3JAlIaUUpRoFU0hAWgWR0CXCVIbOu7pdX2UKGgGaAloD0MIaxFRTN5MckCUhpRSlGgVTTIBaBZHQJcJZw2l2vB1fZQoaAZoCWgPQwh3ZKw2f/tsQJSGlFKUaBVNJwFoFkdAlwp/8l5WzXV9lChoBmgJaA9DCHgJTn2gcHBAlIaUUpRoFU0VAWgWR0CXC8BLf1pTdX2UKGgGaAloD0MIvk9VoYGscUCUhpRSlGgVTQwBaBZHQJcLzo4dZJV1fZQoaAZoCWgPQwh6/Ul8bjxwQJSGlFKUaBVL+GgWR0CXDC5NXYDldX2UKGgGaAloD0MIhgSMLi92cUCUhpRSlGgVTRMBaBZHQJcMduhsZYR1fZQoaAZoCWgPQwieJF0zOSlxQJSGlFKUaBVL+GgWR0CXDf7Z39rHdX2UKGgGaAloD0MI598u+3UzcECUhpRSlGgVS/9oFkdAlw6zOkcjq3V9lChoBmgJaA9DCKrXLQKjhnFAlIaUUpRoFU0hAWgWR0CXDvood+5OdX2UKGgGaAloD0MIrg6AuCsVcECUhpRSlGgVTZEBaBZHQJcPDNVzZHx1fZQoaAZoCWgPQwgSMpBn1ypwQJSGlFKUaBVNBAFoFkdAlw9p5zHS4XV9lChoBmgJaA9DCF68H7df7G5AlIaUUpRoFU0OAWgWR0CXEApzcRDkdX2UKGgGaAloD0MIkfEolfDGb0CUhpRSlGgVTQQBaBZHQJcQOjDbah91fZQoaAZoCWgPQwiMKy6Oyk9yQJSGlFKUaBVNDwFoFkdAlxA9ld1Md3V9lChoBmgJaA9DCGdjJeZZ5W9AlIaUUpRoFU0kAWgWR0CXEPijL0SRdX2UKGgGaAloD0MIZOjYQaXqcUCUhpRSlGgVS/poFkdAlxGdPHktE3V9lChoBmgJaA9DCNXo1QBliHBAlIaUUpRoFU0fAWgWR0CXEe05U96kdX2UKGgGaAloD0MI/aAuUqg3cECUhpRSlGgVTSMBaBZHQJcR/huO0b91fZQoaAZoCWgPQwjyXUpdMtJtQJSGlFKUaBVL+GgWR0CXErCj1wo9dX2UKGgGaAloD0MISpUoe0vqcUCUhpRSlGgVTQwBaBZHQJcTKZw4sEt1fZQoaAZoCWgPQwgsnnqkQVxxQJSGlFKUaBVL+2gWR0CXE3CiAUcodX2UKGgGaAloD0MIY7ZkVYSJbkCUhpRSlGgVTRABaBZHQJcTtLf1pTN1fZQoaAZoCWgPQwgno8ow7oRxQJSGlFKUaBVNCQFoFkdAlxVBx1gYxnVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 620,
80
+ "n_steps": 1024,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88117770d68da40270e3a57feee68b35c737dd7de9ebd02cdf2e0e02e9b15b86
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1cb3a74e8f65cc04187d47920af81dc1dbabb7e56f2dc22d352337bafc00f79
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (242 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 242.4723049411122, "std_reward": 81.72126255439463, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-04T18:38:42.287716"}