Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,121 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
# Model Card for Model ID
|
| 7 |
|
| 8 |
-
|
| 9 |
|
|
|
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
|
| 18 |
-
|
| 19 |
|
| 20 |
-
|
| 21 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
- **Repository:** [More Information Needed]
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
-
|
| 36 |
-
## Uses
|
| 37 |
-
|
| 38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
-
|
| 40 |
-
### Direct Use
|
| 41 |
-
|
| 42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
-
|
| 44 |
-
[More Information Needed]
|
| 45 |
-
|
| 46 |
-
### Downstream Use [optional]
|
| 47 |
-
|
| 48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
-
|
| 50 |
-
[More Information Needed]
|
| 51 |
-
|
| 52 |
-
### Out-of-Scope Use
|
| 53 |
-
|
| 54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
-
|
| 56 |
-
[More Information Needed]
|
| 57 |
-
|
| 58 |
-
## Bias, Risks, and Limitations
|
| 59 |
-
|
| 60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
-
|
| 62 |
-
[More Information Needed]
|
| 63 |
-
|
| 64 |
-
### Recommendations
|
| 65 |
-
|
| 66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
-
|
| 70 |
-
## How to Get Started with the Model
|
| 71 |
-
|
| 72 |
-
Use the code below to get started with the model.
|
| 73 |
-
|
| 74 |
-
[More Information Needed]
|
| 75 |
-
|
| 76 |
-
## Training Details
|
| 77 |
-
|
| 78 |
-
### Training Data
|
| 79 |
-
|
| 80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
-
|
| 84 |
-
### Training Procedure
|
| 85 |
-
|
| 86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
+
tags:
|
| 4 |
+
- avito
|
| 5 |
+
- multimodal
|
| 6 |
+
- vlm
|
| 7 |
+
- vision-language
|
| 8 |
+
- ocr
|
| 9 |
+
license: apache-2.0
|
| 10 |
+
language:
|
| 11 |
+
- ru
|
| 12 |
+
- en
|
| 13 |
+
base_model:
|
| 14 |
+
- Qwen/Qwen2.5-VL-7B-Instruct
|
| 15 |
+
pipeline_tag: image-text-to-text
|
| 16 |
---
|
| 17 |
|
|
|
|
| 18 |
|
| 19 |
+
# A-Vision — русскоязычная VLM Авито
|
| 20 |
|
| 21 |
+
A-Vision — Visual-Language модель, адаптированная под русский язык и домен Авито. Она понимает изображение и текст вместе: описывает фото, отвечает на вопросы по картинке, сверяет соответствие описания и фото, извлекает бренды/надписи/произвольный текст (OCR).
|
| 22 |
|
| 23 |
+
## Зачем и как делали
|
| 24 |
|
| 25 |
+
* **Данные.** Собрали собственный русскоязычный мультимодальный корпус: ~200k изображений объявлений и ≈1M пар «вопрос–ответ», дополненный тщательно локализованными наборами (вместо «сырого» машинного перевода).Также перевели несколько OS-датасетов.
|
| 26 |
+
* **Адаптация LLM.** Заменили токенизатор на русскоязычный; провели **freeze→unfreeze** LLM-части модели на большом корпусе русскоязычного текста.
|
| 27 |
+
* **Мультимодальное SFT.** Дообучили модель на собранном датасете «изображение+вопрос → ответ».
|
| 28 |
+
* **RL-этап.** Проверили DPO, которое позволило добиться от модели безопасных ответов.
|
| 29 |
+
* **Результат.** Рост качества на русскоязычных и доменных тестах (Авито-метрика генерации описаний +5.6%, MMMU_RU +2.6%, RealWorldQA_RU +1.9%) при сохранении универсальных VLM-навыков; небольшая просадка на части англоязычных бенчмарков ожидаема из-за фокуса на русском.
|
| 30 |
|
| 31 |
+
| Метрика | Qwen2.5-VL-7B-Instruct | **A-Vision** |
|
| 32 |
+
| :--------------- | :--------------------: | :----------: |
|
| 33 |
+
| AvitoImageGen_RU | 0.7259 | **0.7668** |
|
| 34 |
+
| MMMU_EN | **0.543** | 0.489 |
|
| 35 |
+
| MMMU_RU | 0.469 | **0.474** |
|
| 36 |
+
| RealWorldQA_EN | 0.673 | **0.693** |
|
| 37 |
+
| RealWorldQA_RU | 0.647 | **0.652** |
|
| 38 |
+
| OCRBench_EN | **878** | 834 |
|
| 39 |
+
| OCRVQA_EN | **77.506** | 74.4098 |
|
| 40 |
+
| ChartQA_EN | **86.44** | 86 |
|
| 41 |
+
| DocVQA_EN | 94.7458 | **94.9702** |
|
| 42 |
|
|
|
|
| 43 |
|
| 44 |
+
В токенизаторе A-vision плотность токенизации выше, чем у Qwen2.5-VL-7B-Instruct поэтому число токенов в контексте и при генерации стало меньше для одинаковых примеров. Кроме того, размер самой модели сократился до 7.9B при 8.2B у Qwen3-8B. За счет этого одинаковые русскоязычные примеры адаптированной моделью обрабатываются быстрее в среднем на 15-25% в сравнении с исходной Qwen2.5-VL-7B-Instruct.
|
| 45 |
|
| 46 |
+
## Где используем в продукте
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
* 📝 Автогенерация описаний карточек по фото
|
| 49 |
+
* 🔍 Ключевые слова для поиска (извлечение признаков с изображений)
|
| 50 |
+
* 🧾 OCR брендов/надписей и их нормализация
|
| 51 |
+
* ⚡ «Подача объявления в один клик» по фото товара
|
| 52 |
+
* 🔧 Внутренние инструменты разметки и модерации
|
| 53 |
|
| 54 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
## Quickstart (Transformers)
|
| 57 |
+
|
| 58 |
+
Ниже — минимальный пример инференса VLM (текст+картинка).
|
| 59 |
+
|
| 60 |
+
```python
|
| 61 |
+
import torch
|
| 62 |
+
from PIL import Image
|
| 63 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText
|
| 64 |
+
from qwen_vl_utils import process_vision_info
|
| 65 |
+
|
| 66 |
+
model_id = "AvitoTech/a-vision"
|
| 67 |
+
|
| 68 |
+
# Модель и процессор
|
| 69 |
+
model = AutoModelForImageTextToText.from_pretrained(
|
| 70 |
+
model_id,
|
| 71 |
+
torch_dtype="auto",
|
| 72 |
+
device_map="auto",
|
| 73 |
+
)
|
| 74 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 75 |
+
|
| 76 |
+
img = Image.open("assets/hoodie.jpg") # выберите локально загруженное изображение
|
| 77 |
+
|
| 78 |
+
messages = [
|
| 79 |
+
{
|
| 80 |
+
"role": "user",
|
| 81 |
+
"content": [
|
| 82 |
+
{
|
| 83 |
+
"type": "image",
|
| 84 |
+
"image": img,
|
| 85 |
+
"min_pixels": 4 * 28 * 28,
|
| 86 |
+
"max_pixels": 1024 * 28 * 28,
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"type": "text",
|
| 90 |
+
"text": "Опиши изображение."
|
| 91 |
+
}
|
| 92 |
+
],
|
| 93 |
+
}
|
| 94 |
+
]
|
| 95 |
+
|
| 96 |
+
# Подготовка входа
|
| 97 |
+
chat_text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 98 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 99 |
+
inputs = processor(
|
| 100 |
+
text=[chat_text],
|
| 101 |
+
images=image_inputs,
|
| 102 |
+
videos=video_inputs,
|
| 103 |
+
padding=True,
|
| 104 |
+
return_tensors="pt",
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
inputs = inputs.to("cuda")
|
| 108 |
+
|
| 109 |
+
# Генерация
|
| 110 |
+
generated_ids = model.generate(**inputs, max_new_tokens=256)
|
| 111 |
+
generated_ids_trimmed = [
|
| 112 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 113 |
+
]
|
| 114 |
+
response = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 115 |
+
print(response)
|
| 116 |
+
```
|
| 117 |
+
|
| 118 |
+
> Примечание:
|
| 119 |
+
> * Для лучшей производительности на видео/мульти-картинках имеет смысл подбирать `min_pixels/max_pixels`.
|
| 120 |
+
|
| 121 |
+
---
|