yangwang825
commited on
Upload PureBertForSequenceClassification
Browse files- config.json +3 -2
- model.safetensors +3 -0
- modeling_pure_bert.py +859 -0
config.json
CHANGED
@@ -2,11 +2,12 @@
|
|
2 |
"_name_or_path": "avsolatorio/GIST-large-Embedding-v0",
|
3 |
"alpha": 1,
|
4 |
"architectures": [
|
5 |
-
"
|
6 |
],
|
7 |
"attention_probs_dropout_prob": 0.1,
|
8 |
"auto_map": {
|
9 |
-
"AutoConfig": "configuration_pure_bert.PureBertConfig"
|
|
|
10 |
},
|
11 |
"center": false,
|
12 |
"classifier_dropout": null,
|
|
|
2 |
"_name_or_path": "avsolatorio/GIST-large-Embedding-v0",
|
3 |
"alpha": 1,
|
4 |
"architectures": [
|
5 |
+
"PureBertForSequenceClassification"
|
6 |
],
|
7 |
"attention_probs_dropout_prob": 0.1,
|
8 |
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_pure_bert.PureBertConfig",
|
10 |
+
"AutoModelForSequenceClassification": "modeling_pure_bert.PureBertForSequenceClassification"
|
11 |
},
|
12 |
"center": false,
|
13 |
"classifier_dropout": null,
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc15a7070af74fa98568b09e9b0fd8d4c5254cf7d2344545d197e123635d0002
|
3 |
+
size 1336420068
|
modeling_pure_bert.py
ADDED
@@ -0,0 +1,859 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
from torch.autograd import Function
|
5 |
+
from transformers import (
|
6 |
+
BertModel,
|
7 |
+
PreTrainedModel,
|
8 |
+
)
|
9 |
+
from typing import Union, Tuple, Optional
|
10 |
+
from transformers.modeling_outputs import (
|
11 |
+
SequenceClassifierOutput,
|
12 |
+
MultipleChoiceModelOutput,
|
13 |
+
QuestionAnsweringModelOutput
|
14 |
+
)
|
15 |
+
from transformers.utils import ModelOutput
|
16 |
+
|
17 |
+
from .configuration_pure_bert import PureBertConfig
|
18 |
+
|
19 |
+
PureBertModel = BertModel
|
20 |
+
|
21 |
+
|
22 |
+
class CovarianceFunction(Function):
|
23 |
+
|
24 |
+
@staticmethod
|
25 |
+
def forward(ctx, inputs):
|
26 |
+
x = inputs
|
27 |
+
b, c, h, w = x.data.shape
|
28 |
+
m = h * w
|
29 |
+
x = x.view(b, c, m)
|
30 |
+
I_hat = (-1.0 / m / m) * torch.ones(m, m, device=x.device) + (
|
31 |
+
1.0 / m
|
32 |
+
) * torch.eye(m, m, device=x.device)
|
33 |
+
I_hat = I_hat.view(1, m, m).repeat(b, 1, 1).type(x.dtype)
|
34 |
+
y = x @ I_hat @ x.transpose(-1, -2)
|
35 |
+
ctx.save_for_backward(inputs, I_hat)
|
36 |
+
return y
|
37 |
+
|
38 |
+
@staticmethod
|
39 |
+
def backward(ctx, grad_output):
|
40 |
+
inputs, I_hat = ctx.saved_tensors
|
41 |
+
x = inputs
|
42 |
+
b, c, h, w = x.data.shape
|
43 |
+
m = h * w
|
44 |
+
x = x.view(b, c, m)
|
45 |
+
grad_input = grad_output + grad_output.transpose(1, 2)
|
46 |
+
grad_input = grad_input @ x @ I_hat
|
47 |
+
grad_input = grad_input.reshape(b, c, h, w)
|
48 |
+
return grad_input
|
49 |
+
|
50 |
+
|
51 |
+
class Covariance(nn.Module):
|
52 |
+
|
53 |
+
def __init__(self):
|
54 |
+
super(Covariance, self).__init__()
|
55 |
+
|
56 |
+
def _covariance(self, x):
|
57 |
+
return CovarianceFunction.apply(x)
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
# x should be [batch_size, seq_len, embed_dim]
|
61 |
+
if x.dim() == 2:
|
62 |
+
x = x.transpose(-1, -2)
|
63 |
+
C = self._covariance(x[None, :, :, None])
|
64 |
+
C = C.squeeze(dim=0)
|
65 |
+
return C
|
66 |
+
|
67 |
+
|
68 |
+
class PFSA(torch.nn.Module):
|
69 |
+
"""
|
70 |
+
https://openreview.net/pdf?id=isodM5jTA7h
|
71 |
+
"""
|
72 |
+
def __init__(self, input_dim, alpha=1):
|
73 |
+
super(PFSA, self).__init__()
|
74 |
+
self.input_dim = input_dim
|
75 |
+
self.alpha = alpha
|
76 |
+
|
77 |
+
def forward_one_sample(self, x):
|
78 |
+
x = x.transpose(1, 2)[..., None]
|
79 |
+
k = torch.mean(x, dim=[-1, -2], keepdim=True)
|
80 |
+
kd = torch.sqrt((k - k.mean(dim=1, keepdim=True)).pow(2).sum(dim=1, keepdim=True)) # [B, 1, 1, 1]
|
81 |
+
qd = torch.sqrt((x - x.mean(dim=1, keepdim=True)).pow(2).sum(dim=1, keepdim=True)) # [B, 1, T, 1]
|
82 |
+
C_qk = (((x - x.mean(dim=1, keepdim=True)) * (k - k.mean(dim=1, keepdim=True))).sum(dim=1, keepdim=True)) / (qd * kd)
|
83 |
+
A = (1 - torch.sigmoid(C_qk)) ** self.alpha
|
84 |
+
out = x * A
|
85 |
+
out = out.squeeze(dim=-1).transpose(1, 2)
|
86 |
+
return out
|
87 |
+
|
88 |
+
def forward(self, input_values, attention_mask=None):
|
89 |
+
"""
|
90 |
+
x: [B, T, F]
|
91 |
+
"""
|
92 |
+
out = []
|
93 |
+
b, t, f = input_values.shape
|
94 |
+
for x, mask in zip(input_values, attention_mask):
|
95 |
+
x = x.view(1, t, f)
|
96 |
+
# x_in = x[:, :sum(mask), :]
|
97 |
+
x_in = x[:, :int(mask.sum().item()), :]
|
98 |
+
x_out = self.forward_one_sample(x_in)
|
99 |
+
x_expanded = torch.zeros_like(x, device=x.device)
|
100 |
+
x_expanded[:, :x_out.shape[-2], :x_out.shape[-1]] = x_out
|
101 |
+
out.append(x_expanded)
|
102 |
+
out = torch.vstack(out)
|
103 |
+
out = out.view(b, t, f)
|
104 |
+
return out
|
105 |
+
|
106 |
+
|
107 |
+
class PURE(torch.nn.Module):
|
108 |
+
|
109 |
+
def __init__(
|
110 |
+
self,
|
111 |
+
in_dim,
|
112 |
+
svd_rank=16,
|
113 |
+
num_pc_to_remove=1,
|
114 |
+
center=False,
|
115 |
+
num_iters=2,
|
116 |
+
alpha=1,
|
117 |
+
disable_pcr=False,
|
118 |
+
disable_pfsa=False,
|
119 |
+
disable_covariance=True,
|
120 |
+
*args, **kwargs
|
121 |
+
):
|
122 |
+
super().__init__()
|
123 |
+
self.in_dim = in_dim
|
124 |
+
self.svd_rank = svd_rank
|
125 |
+
self.num_pc_to_remove = num_pc_to_remove
|
126 |
+
self.center = center
|
127 |
+
self.num_iters = num_iters
|
128 |
+
self.do_pcr = not disable_pcr
|
129 |
+
self.do_pfsa = not disable_pfsa
|
130 |
+
self.do_covariance = not disable_covariance
|
131 |
+
self.attention = PFSA(in_dim, alpha=alpha)
|
132 |
+
|
133 |
+
def _compute_pc(self, X, attention_mask):
|
134 |
+
"""
|
135 |
+
x: (B, T, F)
|
136 |
+
"""
|
137 |
+
pcs = []
|
138 |
+
bs, seqlen, dim = X.shape
|
139 |
+
for x, mask in zip(X, attention_mask):
|
140 |
+
rank = int(mask.sum().item())
|
141 |
+
x = x[:rank, :]
|
142 |
+
if self.do_covariance:
|
143 |
+
x = Covariance()(x)
|
144 |
+
q = self.svd_rank
|
145 |
+
else:
|
146 |
+
q = min(self.svd_rank, rank)
|
147 |
+
_, _, V = torch.pca_lowrank(x, q=q, center=self.center, niter=self.num_iters)
|
148 |
+
# _, _, Vh = torch.linalg.svd(x_, full_matrices=False)
|
149 |
+
# V = Vh.mH
|
150 |
+
pc = V.transpose(0, 1)[:self.num_pc_to_remove, :] # pc: [K, F]
|
151 |
+
pcs.append(pc)
|
152 |
+
# pcs = torch.vstack(pcs)
|
153 |
+
# pcs = pcs.view(bs, self.num_pc_to_remove, dim)
|
154 |
+
return pcs
|
155 |
+
|
156 |
+
def _remove_pc(self, X, pcs):
|
157 |
+
"""
|
158 |
+
[B, T, F], [B, ..., F]
|
159 |
+
"""
|
160 |
+
b, t, f = X.shape
|
161 |
+
out = []
|
162 |
+
for i, (x, pc) in enumerate(zip(X, pcs)):
|
163 |
+
# v = []
|
164 |
+
# for j, t in enumerate(x):
|
165 |
+
# t_ = t
|
166 |
+
# for c_ in c:
|
167 |
+
# t_ = t_.view(f, 1) - c_.view(f, 1) @ c_.view(1, f) @ t.view(f, 1)
|
168 |
+
# v.append(t_.transpose(-1, -2))
|
169 |
+
# v = torch.vstack(v)
|
170 |
+
v = x - x @ pc.transpose(0, 1) @ pc
|
171 |
+
out.append(v[None, ...])
|
172 |
+
out = torch.vstack(out)
|
173 |
+
return out
|
174 |
+
|
175 |
+
def forward(self, input_values, attention_mask=None, *args, **kwargs):
|
176 |
+
"""
|
177 |
+
PCR -> Attention
|
178 |
+
x: (B, T, F)
|
179 |
+
"""
|
180 |
+
x = input_values
|
181 |
+
if self.do_pcr:
|
182 |
+
pc = self._compute_pc(x, attention_mask) # pc: [B, K, F]
|
183 |
+
xx = self._remove_pc(x, pc)
|
184 |
+
# xx = xt - xt @ pc.transpose(1, 2) @ pc # [B, T, F] * [B, F, K] * [B, K, F] = [B, T, F]
|
185 |
+
else:
|
186 |
+
xx = x
|
187 |
+
if self.do_pfsa:
|
188 |
+
xx = self.attention(xx, attention_mask)
|
189 |
+
return xx
|
190 |
+
|
191 |
+
|
192 |
+
class StatisticsPooling(torch.nn.Module):
|
193 |
+
|
194 |
+
def __init__(self, return_mean=True, return_std=True):
|
195 |
+
super().__init__()
|
196 |
+
|
197 |
+
# Small value for GaussNoise
|
198 |
+
self.eps = 1e-5
|
199 |
+
self.return_mean = return_mean
|
200 |
+
self.return_std = return_std
|
201 |
+
if not (self.return_mean or self.return_std):
|
202 |
+
raise ValueError(
|
203 |
+
"both of statistics are equal to False \n"
|
204 |
+
"consider enabling mean and/or std statistic pooling"
|
205 |
+
)
|
206 |
+
|
207 |
+
def forward(self, input_values, attention_mask=None):
|
208 |
+
"""Calculates mean and std for a batch (input tensor).
|
209 |
+
|
210 |
+
Arguments
|
211 |
+
---------
|
212 |
+
x : torch.Tensor
|
213 |
+
It represents a tensor for a mini-batch.
|
214 |
+
"""
|
215 |
+
x = input_values
|
216 |
+
if attention_mask is None:
|
217 |
+
if self.return_mean:
|
218 |
+
mean = x.mean(dim=1)
|
219 |
+
if self.return_std:
|
220 |
+
std = x.std(dim=1)
|
221 |
+
else:
|
222 |
+
mean = []
|
223 |
+
std = []
|
224 |
+
for snt_id in range(x.shape[0]):
|
225 |
+
# Avoiding padded time steps
|
226 |
+
lengths = torch.sum(attention_mask, dim=1)
|
227 |
+
relative_lengths = lengths / torch.max(lengths)
|
228 |
+
actual_size = torch.round(relative_lengths[snt_id] * x.shape[1]).int()
|
229 |
+
# actual_size = int(torch.round(lengths[snt_id] * x.shape[1]))
|
230 |
+
|
231 |
+
# computing statistics
|
232 |
+
if self.return_mean:
|
233 |
+
mean.append(
|
234 |
+
torch.mean(x[snt_id, 0:actual_size, ...], dim=0)
|
235 |
+
)
|
236 |
+
if self.return_std:
|
237 |
+
std.append(torch.std(x[snt_id, 0:actual_size, ...], dim=0))
|
238 |
+
if self.return_mean:
|
239 |
+
mean = torch.stack(mean)
|
240 |
+
if self.return_std:
|
241 |
+
std = torch.stack(std)
|
242 |
+
|
243 |
+
if self.return_mean:
|
244 |
+
gnoise = self._get_gauss_noise(mean.size(), device=mean.device)
|
245 |
+
gnoise = gnoise
|
246 |
+
mean += gnoise
|
247 |
+
if self.return_std:
|
248 |
+
std = std + self.eps
|
249 |
+
|
250 |
+
# Append mean and std of the batch
|
251 |
+
if self.return_mean and self.return_std:
|
252 |
+
pooled_stats = torch.cat((mean, std), dim=1)
|
253 |
+
pooled_stats = pooled_stats.unsqueeze(1)
|
254 |
+
elif self.return_mean:
|
255 |
+
pooled_stats = mean.unsqueeze(1)
|
256 |
+
elif self.return_std:
|
257 |
+
pooled_stats = std.unsqueeze(1)
|
258 |
+
|
259 |
+
return pooled_stats
|
260 |
+
|
261 |
+
def _get_gauss_noise(self, shape_of_tensor, device="cpu"):
|
262 |
+
"""Returns a tensor of epsilon Gaussian noise.
|
263 |
+
|
264 |
+
Arguments
|
265 |
+
---------
|
266 |
+
shape_of_tensor : tensor
|
267 |
+
It represents the size of tensor for generating Gaussian noise.
|
268 |
+
"""
|
269 |
+
gnoise = torch.randn(shape_of_tensor, device=device)
|
270 |
+
gnoise -= torch.min(gnoise)
|
271 |
+
gnoise /= torch.max(gnoise)
|
272 |
+
gnoise = self.eps * ((1 - 9) * gnoise + 9)
|
273 |
+
|
274 |
+
return gnoise
|
275 |
+
|
276 |
+
|
277 |
+
class PureBertPreTrainedModel(PreTrainedModel):
|
278 |
+
"""
|
279 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
280 |
+
models.
|
281 |
+
"""
|
282 |
+
|
283 |
+
config_class = PureBertConfig
|
284 |
+
base_model_prefix = "bert"
|
285 |
+
supports_gradient_checkpointing = True
|
286 |
+
_supports_sdpa = True
|
287 |
+
|
288 |
+
def _init_weights(self, module):
|
289 |
+
"""Initialize the weights"""
|
290 |
+
if isinstance(module, nn.Linear):
|
291 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
292 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
293 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
294 |
+
if module.bias is not None:
|
295 |
+
module.bias.data.zero_()
|
296 |
+
elif isinstance(module, nn.Embedding):
|
297 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
298 |
+
if module.padding_idx is not None:
|
299 |
+
module.weight.data[module.padding_idx].zero_()
|
300 |
+
elif isinstance(module, nn.LayerNorm):
|
301 |
+
module.bias.data.zero_()
|
302 |
+
module.weight.data.fill_(1.0)
|
303 |
+
|
304 |
+
|
305 |
+
class BertClsForSequenceClassification(PureBertPreTrainedModel):
|
306 |
+
|
307 |
+
def __init__(self, config, add_pooling_layer=True):
|
308 |
+
super().__init__(config)
|
309 |
+
self.num_labels = config.num_labels
|
310 |
+
self.config = config
|
311 |
+
|
312 |
+
self.bert = PureBertModel(config, add_pooling_layer=add_pooling_layer)
|
313 |
+
classifier_dropout = (
|
314 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
315 |
+
)
|
316 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
317 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
318 |
+
|
319 |
+
# Initialize weights and apply final processing
|
320 |
+
self.post_init()
|
321 |
+
|
322 |
+
def forward(
|
323 |
+
self,
|
324 |
+
input_ids: Optional[torch.Tensor] = None,
|
325 |
+
attention_mask: Optional[torch.Tensor] = None,
|
326 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
327 |
+
position_ids: Optional[torch.Tensor] = None,
|
328 |
+
head_mask: Optional[torch.Tensor] = None,
|
329 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
330 |
+
labels: Optional[torch.Tensor] = None,
|
331 |
+
output_attentions: Optional[bool] = None,
|
332 |
+
output_hidden_states: Optional[bool] = None,
|
333 |
+
return_dict: Optional[bool] = None,
|
334 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
335 |
+
r"""
|
336 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
337 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
338 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
339 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
340 |
+
"""
|
341 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
342 |
+
|
343 |
+
outputs = self.bert(
|
344 |
+
input_ids,
|
345 |
+
attention_mask=attention_mask,
|
346 |
+
token_type_ids=token_type_ids,
|
347 |
+
position_ids=position_ids,
|
348 |
+
head_mask=head_mask,
|
349 |
+
inputs_embeds=inputs_embeds,
|
350 |
+
output_attentions=output_attentions,
|
351 |
+
output_hidden_states=output_hidden_states,
|
352 |
+
return_dict=return_dict,
|
353 |
+
)
|
354 |
+
|
355 |
+
pooled_output = outputs.pooler_output
|
356 |
+
if pooled_output is None:
|
357 |
+
pooled_output = outputs.last_hidden_state[:, 0, :]
|
358 |
+
|
359 |
+
pooled_output = self.dropout(pooled_output)
|
360 |
+
logits = self.classifier(pooled_output)
|
361 |
+
|
362 |
+
loss = None
|
363 |
+
if labels is not None:
|
364 |
+
if self.config.problem_type is None:
|
365 |
+
if self.num_labels == 1:
|
366 |
+
self.config.problem_type = "regression"
|
367 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
368 |
+
self.config.problem_type = "single_label_classification"
|
369 |
+
else:
|
370 |
+
self.config.problem_type = "multi_label_classification"
|
371 |
+
|
372 |
+
if self.config.problem_type == "regression":
|
373 |
+
loss_fct = nn.MSELoss()
|
374 |
+
if self.num_labels == 1:
|
375 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
376 |
+
else:
|
377 |
+
loss = loss_fct(logits, labels)
|
378 |
+
elif self.config.problem_type == "single_label_classification":
|
379 |
+
loss_fct = nn.CrossEntropyLoss()
|
380 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
381 |
+
elif self.config.problem_type == "multi_label_classification":
|
382 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
383 |
+
loss = loss_fct(logits, labels)
|
384 |
+
if not return_dict:
|
385 |
+
output = (logits,) + outputs[2:]
|
386 |
+
return ((loss,) + output) if loss is not None else output
|
387 |
+
|
388 |
+
return SequenceClassifierOutput(
|
389 |
+
loss=loss,
|
390 |
+
logits=logits,
|
391 |
+
hidden_states=outputs.hidden_states,
|
392 |
+
attentions=outputs.attentions,
|
393 |
+
)
|
394 |
+
|
395 |
+
|
396 |
+
class BertMixupForSequenceClassification(PureBertPreTrainedModel):
|
397 |
+
|
398 |
+
def __init__(self, config, alpha=1.0, label_smoothing=0.0):
|
399 |
+
super().__init__(config)
|
400 |
+
self.num_labels = config.num_labels
|
401 |
+
self.alpha = alpha
|
402 |
+
self.label_smoothing = label_smoothing
|
403 |
+
self.config = config
|
404 |
+
|
405 |
+
self.bert = PureBertModel(config)
|
406 |
+
classifier_dropout = (
|
407 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
408 |
+
)
|
409 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
410 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
411 |
+
|
412 |
+
# Initialize weights and apply final processing
|
413 |
+
self.post_init()
|
414 |
+
|
415 |
+
def mixup_data(self, embeddings, labels, alpha=1.0):
|
416 |
+
"""Compute the mixup data. Returns mixed inputs, pairs of targets, and lambda"""
|
417 |
+
if alpha > 0:
|
418 |
+
lam = np.random.beta(alpha, alpha)
|
419 |
+
else:
|
420 |
+
lam = 1
|
421 |
+
|
422 |
+
batch_size = embeddings.size()[0]
|
423 |
+
index = torch.randperm(batch_size).to(embeddings.device)
|
424 |
+
|
425 |
+
mixed_x = lam * embeddings + (1 - lam) * embeddings[index, :]
|
426 |
+
y_a, y_b = labels, labels[index]
|
427 |
+
return mixed_x, y_a, y_b, lam
|
428 |
+
|
429 |
+
def forward(
|
430 |
+
self,
|
431 |
+
input_ids: Optional[torch.Tensor] = None,
|
432 |
+
attention_mask: Optional[torch.Tensor] = None,
|
433 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
434 |
+
position_ids: Optional[torch.Tensor] = None,
|
435 |
+
head_mask: Optional[torch.Tensor] = None,
|
436 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
437 |
+
labels: Optional[torch.Tensor] = None,
|
438 |
+
output_attentions: Optional[bool] = None,
|
439 |
+
output_hidden_states: Optional[bool] = None,
|
440 |
+
return_dict: Optional[bool] = None,
|
441 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
442 |
+
r"""
|
443 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
444 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
445 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
446 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
447 |
+
"""
|
448 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
449 |
+
|
450 |
+
outputs = self.bert(
|
451 |
+
input_ids,
|
452 |
+
attention_mask=attention_mask,
|
453 |
+
token_type_ids=token_type_ids,
|
454 |
+
position_ids=position_ids,
|
455 |
+
head_mask=head_mask,
|
456 |
+
inputs_embeds=inputs_embeds,
|
457 |
+
output_attentions=output_attentions,
|
458 |
+
output_hidden_states=output_hidden_states,
|
459 |
+
return_dict=return_dict,
|
460 |
+
)
|
461 |
+
|
462 |
+
if self.training:
|
463 |
+
mixed_embeddings, targets_a, targets_b, lam = self.mixup_data(outputs.pooler_output, labels, self.alpha)
|
464 |
+
mixed_embeddings = self.dropout(mixed_embeddings)
|
465 |
+
logits = self.classifier(mixed_embeddings)
|
466 |
+
else:
|
467 |
+
pooler_output = self.dropout(outputs.pooler_output)
|
468 |
+
logits = self.classifier(pooler_output)
|
469 |
+
|
470 |
+
loss = None
|
471 |
+
if labels is not None:
|
472 |
+
if self.config.problem_type is None:
|
473 |
+
if self.num_labels == 1:
|
474 |
+
self.config.problem_type = "regression"
|
475 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
476 |
+
self.config.problem_type = "single_label_classification"
|
477 |
+
else:
|
478 |
+
self.config.problem_type = "multi_label_classification"
|
479 |
+
|
480 |
+
if self.config.problem_type == "regression":
|
481 |
+
loss_fct = nn.MSELoss()
|
482 |
+
if self.num_labels == 1:
|
483 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
484 |
+
else:
|
485 |
+
loss = loss_fct(logits, labels)
|
486 |
+
elif self.config.problem_type == "single_label_classification":
|
487 |
+
loss_fct = nn.CrossEntropyLoss(label_smoothing=self.label_smoothing)
|
488 |
+
logits = logits.view(-1, self.num_labels)
|
489 |
+
if self.training:
|
490 |
+
targets_a = targets_a.view(-1)
|
491 |
+
targets_b = targets_b.view(-1)
|
492 |
+
loss = lam * loss_fct(logits, targets_a) + (1 - lam) * loss_fct(logits, targets_b)
|
493 |
+
else:
|
494 |
+
loss = loss_fct(logits, labels.view(-1))
|
495 |
+
elif self.config.problem_type == "multi_label_classification":
|
496 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
497 |
+
loss = loss_fct(logits, labels)
|
498 |
+
if not return_dict:
|
499 |
+
output = (logits,) + outputs[2:]
|
500 |
+
return ((loss,) + output) if loss is not None else output
|
501 |
+
|
502 |
+
return SequenceClassifierOutput(
|
503 |
+
loss=loss,
|
504 |
+
logits=logits,
|
505 |
+
hidden_states=outputs.hidden_states,
|
506 |
+
attentions=outputs.attentions,
|
507 |
+
)
|
508 |
+
|
509 |
+
|
510 |
+
class PureBertForSequenceClassification(PureBertPreTrainedModel):
|
511 |
+
|
512 |
+
def __init__(
|
513 |
+
self,
|
514 |
+
config,
|
515 |
+
label_smoothing=0.0,
|
516 |
+
):
|
517 |
+
super().__init__(config)
|
518 |
+
self.label_smoothing = label_smoothing
|
519 |
+
self.num_labels = config.num_labels
|
520 |
+
self.config = config
|
521 |
+
|
522 |
+
self.bert = PureBertModel(config, add_pooling_layer=False)
|
523 |
+
classifier_dropout = (
|
524 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
525 |
+
)
|
526 |
+
self.pure = PURE(
|
527 |
+
in_dim=config.hidden_size,
|
528 |
+
svd_rank=config.svd_rank,
|
529 |
+
num_pc_to_remove=config.num_pc_to_remove,
|
530 |
+
center=config.center,
|
531 |
+
num_iters=config.num_iters,
|
532 |
+
alpha=config.alpha,
|
533 |
+
disable_pcr=config.disable_pcr,
|
534 |
+
disable_pfsa=config.disable_pfsa,
|
535 |
+
disable_covariance=config.disable_covariance
|
536 |
+
)
|
537 |
+
self.mean = StatisticsPooling(return_mean=True, return_std=False)
|
538 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
539 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
540 |
+
|
541 |
+
# Initialize weights and apply final processing
|
542 |
+
self.post_init()
|
543 |
+
|
544 |
+
def forward_pure_embeddings(
|
545 |
+
self,
|
546 |
+
input_ids: Optional[torch.Tensor] = None,
|
547 |
+
attention_mask: Optional[torch.Tensor] = None,
|
548 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
549 |
+
position_ids: Optional[torch.Tensor] = None,
|
550 |
+
head_mask: Optional[torch.Tensor] = None,
|
551 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
552 |
+
labels: Optional[torch.Tensor] = None,
|
553 |
+
output_attentions: Optional[bool] = None,
|
554 |
+
output_hidden_states: Optional[bool] = None,
|
555 |
+
return_dict: Optional[bool] = None,
|
556 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
557 |
+
r"""
|
558 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
559 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
560 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
561 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
562 |
+
"""
|
563 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
564 |
+
|
565 |
+
outputs = self.bert(
|
566 |
+
input_ids,
|
567 |
+
attention_mask=attention_mask,
|
568 |
+
token_type_ids=token_type_ids,
|
569 |
+
position_ids=position_ids,
|
570 |
+
head_mask=head_mask,
|
571 |
+
inputs_embeds=inputs_embeds,
|
572 |
+
output_attentions=output_attentions,
|
573 |
+
output_hidden_states=output_hidden_states,
|
574 |
+
return_dict=return_dict,
|
575 |
+
)
|
576 |
+
|
577 |
+
token_embeddings = outputs.last_hidden_state
|
578 |
+
token_embeddings = self.pure(token_embeddings, attention_mask)
|
579 |
+
|
580 |
+
return ModelOutput(
|
581 |
+
last_hidden_state=token_embeddings,
|
582 |
+
)
|
583 |
+
|
584 |
+
def forward(
|
585 |
+
self,
|
586 |
+
input_ids: Optional[torch.Tensor] = None,
|
587 |
+
attention_mask: Optional[torch.Tensor] = None,
|
588 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
589 |
+
position_ids: Optional[torch.Tensor] = None,
|
590 |
+
head_mask: Optional[torch.Tensor] = None,
|
591 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
592 |
+
labels: Optional[torch.Tensor] = None,
|
593 |
+
output_attentions: Optional[bool] = None,
|
594 |
+
output_hidden_states: Optional[bool] = None,
|
595 |
+
return_dict: Optional[bool] = None,
|
596 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
597 |
+
r"""
|
598 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
599 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
600 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
601 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
602 |
+
"""
|
603 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
604 |
+
|
605 |
+
outputs = self.bert(
|
606 |
+
input_ids,
|
607 |
+
attention_mask=attention_mask,
|
608 |
+
token_type_ids=token_type_ids,
|
609 |
+
position_ids=position_ids,
|
610 |
+
head_mask=head_mask,
|
611 |
+
inputs_embeds=inputs_embeds,
|
612 |
+
output_attentions=output_attentions,
|
613 |
+
output_hidden_states=output_hidden_states,
|
614 |
+
return_dict=return_dict,
|
615 |
+
)
|
616 |
+
|
617 |
+
token_embeddings = outputs.last_hidden_state
|
618 |
+
token_embeddings = self.pure(token_embeddings, attention_mask)
|
619 |
+
pooled_output = self.mean(token_embeddings).squeeze(1)
|
620 |
+
pooled_output = self.dropout(pooled_output)
|
621 |
+
logits = self.classifier(pooled_output)
|
622 |
+
|
623 |
+
loss = None
|
624 |
+
if labels is not None:
|
625 |
+
if self.config.problem_type is None:
|
626 |
+
if self.num_labels == 1:
|
627 |
+
self.config.problem_type = "regression"
|
628 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
629 |
+
self.config.problem_type = "single_label_classification"
|
630 |
+
else:
|
631 |
+
self.config.problem_type = "multi_label_classification"
|
632 |
+
|
633 |
+
if self.config.problem_type == "regression":
|
634 |
+
loss_fct = nn.MSELoss()
|
635 |
+
if self.num_labels == 1:
|
636 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
637 |
+
else:
|
638 |
+
loss = loss_fct(logits, labels)
|
639 |
+
elif self.config.problem_type == "single_label_classification":
|
640 |
+
loss_fct = nn.CrossEntropyLoss(label_smoothing=self.label_smoothing)
|
641 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
642 |
+
elif self.config.problem_type == "multi_label_classification":
|
643 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
644 |
+
loss = loss_fct(logits, labels)
|
645 |
+
if not return_dict:
|
646 |
+
output = (logits,) + outputs[2:]
|
647 |
+
return ((loss,) + output) if loss is not None else output
|
648 |
+
|
649 |
+
return SequenceClassifierOutput(
|
650 |
+
loss=loss,
|
651 |
+
logits=logits,
|
652 |
+
hidden_states=outputs.hidden_states,
|
653 |
+
attentions=outputs.attentions,
|
654 |
+
)
|
655 |
+
|
656 |
+
|
657 |
+
class PureBertForMultipleChoice(PureBertPreTrainedModel):
|
658 |
+
|
659 |
+
def __init__(
|
660 |
+
self,
|
661 |
+
config,
|
662 |
+
label_smoothing=0.0,
|
663 |
+
):
|
664 |
+
super().__init__(config)
|
665 |
+
self.label_smoothing = label_smoothing
|
666 |
+
|
667 |
+
self.bert = PureBertModel(config)
|
668 |
+
self.pure = PURE(
|
669 |
+
in_dim=config.hidden_size,
|
670 |
+
svd_rank=config.svd_rank,
|
671 |
+
num_pc_to_remove=config.num_pc_to_remove,
|
672 |
+
center=config.center,
|
673 |
+
num_iters=config.num_iters,
|
674 |
+
alpha=config.alpha,
|
675 |
+
disable_pcr=config.disable_pcr,
|
676 |
+
disable_pfsa=config.disable_pfsa,
|
677 |
+
disable_covariance=config.disable_covariance
|
678 |
+
)
|
679 |
+
self.mean = StatisticsPooling(return_mean=True, return_std=False)
|
680 |
+
classifier_dropout = (
|
681 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
682 |
+
)
|
683 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
684 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
685 |
+
|
686 |
+
# Initialize weights and apply final processing
|
687 |
+
self.post_init()
|
688 |
+
|
689 |
+
def forward(
|
690 |
+
self,
|
691 |
+
input_ids: Optional[torch.Tensor] = None,
|
692 |
+
attention_mask: Optional[torch.Tensor] = None,
|
693 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
694 |
+
position_ids: Optional[torch.Tensor] = None,
|
695 |
+
head_mask: Optional[torch.Tensor] = None,
|
696 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
697 |
+
labels: Optional[torch.Tensor] = None,
|
698 |
+
output_attentions: Optional[bool] = None,
|
699 |
+
output_hidden_states: Optional[bool] = None,
|
700 |
+
return_dict: Optional[bool] = None,
|
701 |
+
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
702 |
+
r"""
|
703 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
704 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
705 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
706 |
+
`input_ids` above)
|
707 |
+
"""
|
708 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
709 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
710 |
+
|
711 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
712 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
713 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
714 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
715 |
+
inputs_embeds = (
|
716 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
717 |
+
if inputs_embeds is not None
|
718 |
+
else None
|
719 |
+
)
|
720 |
+
|
721 |
+
outputs = self.bert(
|
722 |
+
input_ids,
|
723 |
+
attention_mask=attention_mask,
|
724 |
+
token_type_ids=token_type_ids,
|
725 |
+
position_ids=position_ids,
|
726 |
+
head_mask=head_mask,
|
727 |
+
inputs_embeds=inputs_embeds,
|
728 |
+
output_attentions=output_attentions,
|
729 |
+
output_hidden_states=output_hidden_states,
|
730 |
+
return_dict=return_dict,
|
731 |
+
)
|
732 |
+
|
733 |
+
token_embeddings = outputs.last_hidden_state
|
734 |
+
token_embeddings = self.pure(token_embeddings, attention_mask)
|
735 |
+
pooled_output = self.mean(token_embeddings).squeeze(1)
|
736 |
+
pooled_output = self.dropout(pooled_output)
|
737 |
+
|
738 |
+
logits = self.classifier(pooled_output)
|
739 |
+
reshaped_logits = logits.view(-1, num_choices)
|
740 |
+
|
741 |
+
loss = None
|
742 |
+
if labels is not None:
|
743 |
+
loss_fct = nn.CrossEntropyLoss(label_smoothing=self.label_smoothing)
|
744 |
+
loss = loss_fct(reshaped_logits, labels)
|
745 |
+
|
746 |
+
if not return_dict:
|
747 |
+
output = (reshaped_logits,) + outputs[2:]
|
748 |
+
return ((loss,) + output) if loss is not None else output
|
749 |
+
|
750 |
+
return MultipleChoiceModelOutput(
|
751 |
+
loss=loss,
|
752 |
+
logits=reshaped_logits,
|
753 |
+
hidden_states=outputs.hidden_states,
|
754 |
+
attentions=outputs.attentions,
|
755 |
+
)
|
756 |
+
|
757 |
+
|
758 |
+
class PureBertForQuestionAnswering(PureBertPreTrainedModel):
|
759 |
+
|
760 |
+
def __init__(
|
761 |
+
self,
|
762 |
+
config,
|
763 |
+
label_smoothing=0.0,
|
764 |
+
):
|
765 |
+
super().__init__(config)
|
766 |
+
self.num_labels = config.num_labels
|
767 |
+
self.label_smoothing = label_smoothing
|
768 |
+
|
769 |
+
self.bert = PureBertModel(config, add_pooling_layer=False)
|
770 |
+
self.pure = PURE(
|
771 |
+
in_dim=config.hidden_size,
|
772 |
+
svd_rank=config.svd_rank,
|
773 |
+
num_pc_to_remove=config.num_pc_to_remove,
|
774 |
+
center=config.center,
|
775 |
+
num_iters=config.num_iters,
|
776 |
+
alpha=config.alpha,
|
777 |
+
disable_pcr=config.disable_pcr,
|
778 |
+
disable_pfsa=config.disable_pfsa,
|
779 |
+
disable_covariance=config.disable_covariance
|
780 |
+
)
|
781 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
782 |
+
|
783 |
+
# Initialize weights and apply final processing
|
784 |
+
self.post_init()
|
785 |
+
|
786 |
+
def forward(
|
787 |
+
self,
|
788 |
+
input_ids: Optional[torch.Tensor] = None,
|
789 |
+
attention_mask: Optional[torch.Tensor] = None,
|
790 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
791 |
+
position_ids: Optional[torch.Tensor] = None,
|
792 |
+
head_mask: Optional[torch.Tensor] = None,
|
793 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
794 |
+
start_positions: Optional[torch.Tensor] = None,
|
795 |
+
end_positions: Optional[torch.Tensor] = None,
|
796 |
+
output_attentions: Optional[bool] = None,
|
797 |
+
output_hidden_states: Optional[bool] = None,
|
798 |
+
return_dict: Optional[bool] = None,
|
799 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
800 |
+
r"""
|
801 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
802 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
803 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
804 |
+
are not taken into account for computing the loss.
|
805 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
806 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
807 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
808 |
+
are not taken into account for computing the loss.
|
809 |
+
"""
|
810 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
811 |
+
|
812 |
+
outputs = self.bert(
|
813 |
+
input_ids,
|
814 |
+
attention_mask=attention_mask,
|
815 |
+
token_type_ids=token_type_ids,
|
816 |
+
position_ids=position_ids,
|
817 |
+
head_mask=head_mask,
|
818 |
+
inputs_embeds=inputs_embeds,
|
819 |
+
output_attentions=output_attentions,
|
820 |
+
output_hidden_states=output_hidden_states,
|
821 |
+
return_dict=return_dict,
|
822 |
+
)
|
823 |
+
|
824 |
+
token_embeddings = outputs.last_hidden_state
|
825 |
+
sequence_output = self.pure(token_embeddings, attention_mask)
|
826 |
+
|
827 |
+
logits = self.qa_outputs(sequence_output)
|
828 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
829 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
830 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
831 |
+
|
832 |
+
total_loss = None
|
833 |
+
if start_positions is not None and end_positions is not None:
|
834 |
+
# If we are on multi-GPU, split add a dimension
|
835 |
+
if len(start_positions.size()) > 1:
|
836 |
+
start_positions = start_positions.squeeze(-1)
|
837 |
+
if len(end_positions.size()) > 1:
|
838 |
+
end_positions = end_positions.squeeze(-1)
|
839 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
840 |
+
ignored_index = start_logits.size(1)
|
841 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
842 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
843 |
+
|
844 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
|
845 |
+
start_loss = loss_fct(start_logits, start_positions)
|
846 |
+
end_loss = loss_fct(end_logits, end_positions)
|
847 |
+
total_loss = (start_loss + end_loss) / 2
|
848 |
+
|
849 |
+
if not return_dict:
|
850 |
+
output = (start_logits, end_logits) + outputs[2:]
|
851 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
852 |
+
|
853 |
+
return QuestionAnsweringModelOutput(
|
854 |
+
loss=total_loss,
|
855 |
+
start_logits=start_logits,
|
856 |
+
end_logits=end_logits,
|
857 |
+
hidden_states=outputs.hidden_states,
|
858 |
+
attentions=outputs.attentions,
|
859 |
+
)
|