yangwang825
commited on
Commit
•
3550a02
1
Parent(s):
60b3791
Upload PureBertForSequenceClassification
Browse files- config.json +4 -3
- model.safetensors +3 -0
- modeling_pure_bert.py +864 -0
config.json
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "/
|
3 |
"alpha": 1,
|
4 |
"architectures": [
|
5 |
-
"
|
6 |
],
|
7 |
"attention_probs_dropout_prob": 0.1,
|
8 |
"auto_map": {
|
9 |
-
"AutoConfig": "configuration_pure_bert.PureBertConfig"
|
|
|
10 |
},
|
11 |
"center": false,
|
12 |
"classifier_dropout": null,
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "BAAI/bge-large-en-v1.5",
|
3 |
"alpha": 1,
|
4 |
"architectures": [
|
5 |
+
"PureBertForSequenceClassification"
|
6 |
],
|
7 |
"attention_probs_dropout_prob": 0.1,
|
8 |
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_pure_bert.PureBertConfig",
|
10 |
+
"AutoModelForSequenceClassification": "modeling_pure_bert.PureBertForSequenceClassification"
|
11 |
},
|
12 |
"center": false,
|
13 |
"classifier_dropout": null,
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88d12b0f3b00bfde7a5ee7d3e054714e68ee6c358de80add011040ac7a009e26
|
3 |
+
size 1336420068
|
modeling_pure_bert.py
ADDED
@@ -0,0 +1,864 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
from torch.autograd import Function
|
5 |
+
from transformers import PreTrainedModel
|
6 |
+
from transformers.models.bert.modeling_bert import (
|
7 |
+
BertEmbeddings, BertEncoder, BertPooler
|
8 |
+
)
|
9 |
+
from typing import Union, Tuple, Optional, List
|
10 |
+
from transformers.modeling_outputs import (
|
11 |
+
SequenceClassifierOutput,
|
12 |
+
MultipleChoiceModelOutput,
|
13 |
+
QuestionAnsweringModelOutput,
|
14 |
+
BaseModelOutputWithPoolingAndCrossAttentions
|
15 |
+
)
|
16 |
+
from transformers.modeling_attn_mask_utils import (
|
17 |
+
_prepare_4d_attention_mask_for_sdpa,
|
18 |
+
_prepare_4d_causal_attention_mask_for_sdpa,
|
19 |
+
)
|
20 |
+
from transformers.utils import ModelOutput
|
21 |
+
|
22 |
+
from .configuration_pure_bert import PureBertConfig
|
23 |
+
|
24 |
+
|
25 |
+
class CovarianceFunction(Function):
|
26 |
+
|
27 |
+
@staticmethod
|
28 |
+
def forward(ctx, inputs):
|
29 |
+
x = inputs
|
30 |
+
b, c, h, w = x.data.shape
|
31 |
+
m = h * w
|
32 |
+
x = x.view(b, c, m)
|
33 |
+
I_hat = (-1.0 / m / m) * torch.ones(m, m, device=x.device) + (
|
34 |
+
1.0 / m
|
35 |
+
) * torch.eye(m, m, device=x.device)
|
36 |
+
I_hat = I_hat.view(1, m, m).repeat(b, 1, 1).type(x.dtype)
|
37 |
+
y = x @ I_hat @ x.transpose(-1, -2)
|
38 |
+
ctx.save_for_backward(inputs, I_hat)
|
39 |
+
return y
|
40 |
+
|
41 |
+
@staticmethod
|
42 |
+
def backward(ctx, grad_output):
|
43 |
+
inputs, I_hat = ctx.saved_tensors
|
44 |
+
x = inputs
|
45 |
+
b, c, h, w = x.data.shape
|
46 |
+
m = h * w
|
47 |
+
x = x.view(b, c, m)
|
48 |
+
grad_input = grad_output + grad_output.transpose(1, 2)
|
49 |
+
grad_input = grad_input @ x @ I_hat
|
50 |
+
grad_input = grad_input.reshape(b, c, h, w)
|
51 |
+
return grad_input
|
52 |
+
|
53 |
+
|
54 |
+
class Covariance(nn.Module):
|
55 |
+
|
56 |
+
def __init__(self):
|
57 |
+
super(Covariance, self).__init__()
|
58 |
+
|
59 |
+
def _covariance(self, x):
|
60 |
+
return CovarianceFunction.apply(x)
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
# x should be [batch_size, seq_len, embed_dim]
|
64 |
+
if x.dim() == 2:
|
65 |
+
x = x.transpose(-1, -2)
|
66 |
+
C = self._covariance(x[None, :, :, None])
|
67 |
+
C = C.squeeze(dim=0)
|
68 |
+
return C
|
69 |
+
|
70 |
+
|
71 |
+
class PFSA(torch.nn.Module):
|
72 |
+
"""
|
73 |
+
https://openreview.net/pdf?id=isodM5jTA7h
|
74 |
+
"""
|
75 |
+
def __init__(self, input_dim, alpha=1):
|
76 |
+
super(PFSA, self).__init__()
|
77 |
+
self.input_dim = input_dim
|
78 |
+
self.alpha = alpha
|
79 |
+
|
80 |
+
def forward_one_sample(self, x):
|
81 |
+
x = x.transpose(1, 2)[..., None]
|
82 |
+
k = torch.mean(x, dim=[-1, -2], keepdim=True)
|
83 |
+
kd = torch.sqrt((k - k.mean(dim=1, keepdim=True)).pow(2).sum(dim=1, keepdim=True)) # [B, 1, 1, 1]
|
84 |
+
qd = torch.sqrt((x - x.mean(dim=1, keepdim=True)).pow(2).sum(dim=1, keepdim=True)) # [B, 1, T, 1]
|
85 |
+
C_qk = (((x - x.mean(dim=1, keepdim=True)) * (k - k.mean(dim=1, keepdim=True))).sum(dim=1, keepdim=True)) / (qd * kd)
|
86 |
+
A = (1 - torch.sigmoid(C_qk)) ** self.alpha
|
87 |
+
out = x * A
|
88 |
+
out = out.squeeze(dim=-1).transpose(1, 2)
|
89 |
+
return out
|
90 |
+
|
91 |
+
def forward(self, input_values, attention_mask=None):
|
92 |
+
"""
|
93 |
+
x: [B, T, F]
|
94 |
+
"""
|
95 |
+
out = []
|
96 |
+
b, t, f = input_values.shape
|
97 |
+
for x, mask in zip(input_values, attention_mask):
|
98 |
+
x = x.view(1, t, f)
|
99 |
+
# x_in = x[:, :sum(mask), :]
|
100 |
+
x_in = x[:, :int(mask.sum().item()), :]
|
101 |
+
x_out = self.forward_one_sample(x_in)
|
102 |
+
x_expanded = torch.zeros_like(x, device=x.device)
|
103 |
+
x_expanded[:, :x_out.shape[-2], :x_out.shape[-1]] = x_out
|
104 |
+
out.append(x_expanded)
|
105 |
+
out = torch.vstack(out)
|
106 |
+
out = out.view(b, t, f)
|
107 |
+
return out
|
108 |
+
|
109 |
+
|
110 |
+
class PURE(torch.nn.Module):
|
111 |
+
|
112 |
+
def __init__(
|
113 |
+
self,
|
114 |
+
in_dim,
|
115 |
+
svd_rank=16,
|
116 |
+
num_pc_to_remove=1,
|
117 |
+
center=False,
|
118 |
+
num_iters=2,
|
119 |
+
alpha=1,
|
120 |
+
disable_pcr=False,
|
121 |
+
disable_pfsa=False,
|
122 |
+
disable_covariance=True,
|
123 |
+
*args, **kwargs
|
124 |
+
):
|
125 |
+
super().__init__()
|
126 |
+
self.in_dim = in_dim
|
127 |
+
self.svd_rank = svd_rank
|
128 |
+
self.num_pc_to_remove = num_pc_to_remove
|
129 |
+
self.center = center
|
130 |
+
self.num_iters = num_iters
|
131 |
+
self.do_pcr = not disable_pcr
|
132 |
+
self.do_pfsa = not disable_pfsa
|
133 |
+
self.do_covariance = not disable_covariance
|
134 |
+
self.attention = PFSA(in_dim, alpha=alpha)
|
135 |
+
|
136 |
+
def _compute_pc(self, X, attention_mask):
|
137 |
+
"""
|
138 |
+
x: (B, T, F)
|
139 |
+
"""
|
140 |
+
pcs = []
|
141 |
+
bs, seqlen, dim = X.shape
|
142 |
+
for x, mask in zip(X, attention_mask):
|
143 |
+
rank = int(mask.sum().item())
|
144 |
+
x = x[:rank, :]
|
145 |
+
if self.do_covariance:
|
146 |
+
x = Covariance()(x)
|
147 |
+
q = self.svd_rank
|
148 |
+
else:
|
149 |
+
q = min(self.svd_rank, rank)
|
150 |
+
_, _, V = torch.pca_lowrank(x, q=q, center=self.center, niter=self.num_iters)
|
151 |
+
# _, _, Vh = torch.linalg.svd(x_, full_matrices=False)
|
152 |
+
# V = Vh.mH
|
153 |
+
pc = V.transpose(0, 1)[:self.num_pc_to_remove, :] # pc: [K, F]
|
154 |
+
pcs.append(pc)
|
155 |
+
# pcs = torch.vstack(pcs)
|
156 |
+
# pcs = pcs.view(bs, self.num_pc_to_remove, dim)
|
157 |
+
return pcs
|
158 |
+
|
159 |
+
def _remove_pc(self, X, pcs):
|
160 |
+
"""
|
161 |
+
[B, T, F], [B, ..., F]
|
162 |
+
"""
|
163 |
+
b, t, f = X.shape
|
164 |
+
out = []
|
165 |
+
for i, (x, pc) in enumerate(zip(X, pcs)):
|
166 |
+
# v = []
|
167 |
+
# for j, t in enumerate(x):
|
168 |
+
# t_ = t
|
169 |
+
# for c_ in c:
|
170 |
+
# t_ = t_.view(f, 1) - c_.view(f, 1) @ c_.view(1, f) @ t.view(f, 1)
|
171 |
+
# v.append(t_.transpose(-1, -2))
|
172 |
+
# v = torch.vstack(v)
|
173 |
+
v = x - x @ pc.transpose(0, 1) @ pc
|
174 |
+
out.append(v[None, ...])
|
175 |
+
out = torch.vstack(out)
|
176 |
+
return out
|
177 |
+
|
178 |
+
def forward(self, input_values, attention_mask=None, *args, **kwargs):
|
179 |
+
"""
|
180 |
+
PCR -> Attention
|
181 |
+
x: (B, T, F)
|
182 |
+
"""
|
183 |
+
x = input_values
|
184 |
+
if self.do_pcr:
|
185 |
+
pc = self._compute_pc(x, attention_mask) # pc: [B, K, F]
|
186 |
+
xx = self._remove_pc(x, pc)
|
187 |
+
# xx = xt - xt @ pc.transpose(1, 2) @ pc # [B, T, F] * [B, F, K] * [B, K, F] = [B, T, F]
|
188 |
+
else:
|
189 |
+
xx = x
|
190 |
+
if self.do_pfsa:
|
191 |
+
xx = self.attention(xx, attention_mask)
|
192 |
+
return xx
|
193 |
+
|
194 |
+
|
195 |
+
class StatisticsPooling(torch.nn.Module):
|
196 |
+
|
197 |
+
def __init__(self, return_mean=True, return_std=True):
|
198 |
+
super().__init__()
|
199 |
+
|
200 |
+
# Small value for GaussNoise
|
201 |
+
self.eps = 1e-5
|
202 |
+
self.return_mean = return_mean
|
203 |
+
self.return_std = return_std
|
204 |
+
if not (self.return_mean or self.return_std):
|
205 |
+
raise ValueError(
|
206 |
+
"both of statistics are equal to False \n"
|
207 |
+
"consider enabling mean and/or std statistic pooling"
|
208 |
+
)
|
209 |
+
|
210 |
+
def forward(self, input_values, attention_mask=None):
|
211 |
+
"""Calculates mean and std for a batch (input tensor).
|
212 |
+
|
213 |
+
Arguments
|
214 |
+
---------
|
215 |
+
x : torch.Tensor
|
216 |
+
It represents a tensor for a mini-batch.
|
217 |
+
"""
|
218 |
+
x = input_values
|
219 |
+
if attention_mask is None:
|
220 |
+
if self.return_mean:
|
221 |
+
mean = x.mean(dim=1)
|
222 |
+
if self.return_std:
|
223 |
+
std = x.std(dim=1)
|
224 |
+
else:
|
225 |
+
mean = []
|
226 |
+
std = []
|
227 |
+
for snt_id in range(x.shape[0]):
|
228 |
+
# Avoiding padded time steps
|
229 |
+
lengths = torch.sum(attention_mask, dim=1)
|
230 |
+
relative_lengths = lengths / torch.max(lengths)
|
231 |
+
actual_size = torch.round(relative_lengths[snt_id] * x.shape[1]).int()
|
232 |
+
# actual_size = int(torch.round(lengths[snt_id] * x.shape[1]))
|
233 |
+
|
234 |
+
# computing statistics
|
235 |
+
if self.return_mean:
|
236 |
+
mean.append(
|
237 |
+
torch.mean(x[snt_id, 0:actual_size, ...], dim=0)
|
238 |
+
)
|
239 |
+
if self.return_std:
|
240 |
+
std.append(torch.std(x[snt_id, 0:actual_size, ...], dim=0))
|
241 |
+
if self.return_mean:
|
242 |
+
mean = torch.stack(mean)
|
243 |
+
if self.return_std:
|
244 |
+
std = torch.stack(std)
|
245 |
+
|
246 |
+
if self.return_mean:
|
247 |
+
gnoise = self._get_gauss_noise(mean.size(), device=mean.device)
|
248 |
+
gnoise = gnoise
|
249 |
+
mean += gnoise
|
250 |
+
if self.return_std:
|
251 |
+
std = std + self.eps
|
252 |
+
|
253 |
+
# Append mean and std of the batch
|
254 |
+
if self.return_mean and self.return_std:
|
255 |
+
pooled_stats = torch.cat((mean, std), dim=1)
|
256 |
+
pooled_stats = pooled_stats.unsqueeze(1)
|
257 |
+
elif self.return_mean:
|
258 |
+
pooled_stats = mean.unsqueeze(1)
|
259 |
+
elif self.return_std:
|
260 |
+
pooled_stats = std.unsqueeze(1)
|
261 |
+
|
262 |
+
return pooled_stats
|
263 |
+
|
264 |
+
def _get_gauss_noise(self, shape_of_tensor, device="cpu"):
|
265 |
+
"""Returns a tensor of epsilon Gaussian noise.
|
266 |
+
|
267 |
+
Arguments
|
268 |
+
---------
|
269 |
+
shape_of_tensor : tensor
|
270 |
+
It represents the size of tensor for generating Gaussian noise.
|
271 |
+
"""
|
272 |
+
gnoise = torch.randn(shape_of_tensor, device=device)
|
273 |
+
gnoise -= torch.min(gnoise)
|
274 |
+
gnoise /= torch.max(gnoise)
|
275 |
+
gnoise = self.eps * ((1 - 9) * gnoise + 9)
|
276 |
+
|
277 |
+
return gnoise
|
278 |
+
|
279 |
+
|
280 |
+
class PureBertPreTrainedModel(PreTrainedModel):
|
281 |
+
"""
|
282 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
283 |
+
models.
|
284 |
+
"""
|
285 |
+
|
286 |
+
config_class = PureBertConfig
|
287 |
+
base_model_prefix = "bert"
|
288 |
+
supports_gradient_checkpointing = True
|
289 |
+
_supports_sdpa = True
|
290 |
+
|
291 |
+
def _init_weights(self, module):
|
292 |
+
"""Initialize the weights"""
|
293 |
+
if isinstance(module, nn.Linear):
|
294 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
295 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
296 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
297 |
+
if module.bias is not None:
|
298 |
+
module.bias.data.zero_()
|
299 |
+
elif isinstance(module, nn.Embedding):
|
300 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
301 |
+
if module.padding_idx is not None:
|
302 |
+
module.weight.data[module.padding_idx].zero_()
|
303 |
+
elif isinstance(module, nn.LayerNorm):
|
304 |
+
module.bias.data.zero_()
|
305 |
+
module.weight.data.fill_(1.0)
|
306 |
+
|
307 |
+
|
308 |
+
class PureBertModel(PureBertPreTrainedModel):
|
309 |
+
"""
|
310 |
+
|
311 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
312 |
+
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
313 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
314 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
315 |
+
|
316 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
317 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
318 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
319 |
+
"""
|
320 |
+
|
321 |
+
_no_split_modules = ["BertEmbeddings", "BertLayer"]
|
322 |
+
|
323 |
+
def __init__(self, config, add_pooling_layer=True):
|
324 |
+
super().__init__(config)
|
325 |
+
self.config = config
|
326 |
+
|
327 |
+
self.embeddings = BertEmbeddings(config)
|
328 |
+
self.encoder = BertEncoder(config)
|
329 |
+
|
330 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
331 |
+
|
332 |
+
self.attn_implementation = config._attn_implementation
|
333 |
+
self.position_embedding_type = config.position_embedding_type
|
334 |
+
|
335 |
+
# Initialize weights and apply final processing
|
336 |
+
self.post_init()
|
337 |
+
|
338 |
+
def get_input_embeddings(self):
|
339 |
+
return self.embeddings.word_embeddings
|
340 |
+
|
341 |
+
def set_input_embeddings(self, value):
|
342 |
+
self.embeddings.word_embeddings = value
|
343 |
+
|
344 |
+
def _prune_heads(self, heads_to_prune):
|
345 |
+
"""
|
346 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
347 |
+
class PreTrainedModel
|
348 |
+
"""
|
349 |
+
for layer, heads in heads_to_prune.items():
|
350 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
351 |
+
|
352 |
+
def forward(
|
353 |
+
self,
|
354 |
+
input_ids: Optional[torch.Tensor] = None,
|
355 |
+
attention_mask: Optional[torch.Tensor] = None,
|
356 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
357 |
+
position_ids: Optional[torch.Tensor] = None,
|
358 |
+
head_mask: Optional[torch.Tensor] = None,
|
359 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
360 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
361 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
362 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
363 |
+
use_cache: Optional[bool] = None,
|
364 |
+
output_attentions: Optional[bool] = None,
|
365 |
+
output_hidden_states: Optional[bool] = None,
|
366 |
+
return_dict: Optional[bool] = None,
|
367 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
368 |
+
r"""
|
369 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
370 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
371 |
+
the model is configured as a decoder.
|
372 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, target_length)`, *optional*):
|
373 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
374 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
375 |
+
|
376 |
+
- 1 for tokens that are **not masked**,
|
377 |
+
- 0 for tokens that are **masked**.
|
378 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
379 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
380 |
+
|
381 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
382 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
383 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
384 |
+
use_cache (`bool`, *optional*):
|
385 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
386 |
+
`past_key_values`).
|
387 |
+
"""
|
388 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
389 |
+
output_hidden_states = (
|
390 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
391 |
+
)
|
392 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
393 |
+
|
394 |
+
if self.config.is_decoder:
|
395 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
396 |
+
else:
|
397 |
+
use_cache = False
|
398 |
+
|
399 |
+
if input_ids is not None and inputs_embeds is not None:
|
400 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
401 |
+
elif input_ids is not None:
|
402 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
403 |
+
input_shape = input_ids.size()
|
404 |
+
elif inputs_embeds is not None:
|
405 |
+
input_shape = inputs_embeds.size()[:-1]
|
406 |
+
else:
|
407 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
408 |
+
|
409 |
+
batch_size, seq_length = input_shape
|
410 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
411 |
+
|
412 |
+
# past_key_values_length
|
413 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
414 |
+
|
415 |
+
if token_type_ids is None:
|
416 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
417 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
418 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
419 |
+
token_type_ids = buffered_token_type_ids_expanded
|
420 |
+
else:
|
421 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
422 |
+
|
423 |
+
embedding_output = self.embeddings(
|
424 |
+
input_ids=input_ids,
|
425 |
+
position_ids=position_ids,
|
426 |
+
token_type_ids=token_type_ids,
|
427 |
+
inputs_embeds=inputs_embeds,
|
428 |
+
past_key_values_length=past_key_values_length,
|
429 |
+
)
|
430 |
+
|
431 |
+
if attention_mask is None:
|
432 |
+
attention_mask = torch.ones((batch_size, seq_length + past_key_values_length), device=device)
|
433 |
+
|
434 |
+
use_sdpa_attention_masks = (
|
435 |
+
self.attn_implementation == "sdpa"
|
436 |
+
and self.position_embedding_type == "absolute"
|
437 |
+
and head_mask is None
|
438 |
+
and not output_attentions
|
439 |
+
)
|
440 |
+
|
441 |
+
# Expand the attention mask
|
442 |
+
if use_sdpa_attention_masks and attention_mask.dim() == 2:
|
443 |
+
# Expand the attention mask for SDPA.
|
444 |
+
# [bsz, seq_len] -> [bsz, 1, seq_len, seq_len]
|
445 |
+
if self.config.is_decoder:
|
446 |
+
extended_attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
447 |
+
attention_mask,
|
448 |
+
input_shape,
|
449 |
+
embedding_output,
|
450 |
+
past_key_values_length,
|
451 |
+
)
|
452 |
+
else:
|
453 |
+
extended_attention_mask = _prepare_4d_attention_mask_for_sdpa(
|
454 |
+
attention_mask, embedding_output.dtype, tgt_len=seq_length
|
455 |
+
)
|
456 |
+
else:
|
457 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
458 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
459 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
|
460 |
+
|
461 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
462 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
463 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
464 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
465 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
466 |
+
if encoder_attention_mask is None:
|
467 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
468 |
+
|
469 |
+
if use_sdpa_attention_masks and encoder_attention_mask.dim() == 2:
|
470 |
+
# Expand the attention mask for SDPA.
|
471 |
+
# [bsz, seq_len] -> [bsz, 1, seq_len, seq_len]
|
472 |
+
encoder_extended_attention_mask = _prepare_4d_attention_mask_for_sdpa(
|
473 |
+
encoder_attention_mask, embedding_output.dtype, tgt_len=seq_length
|
474 |
+
)
|
475 |
+
else:
|
476 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
477 |
+
else:
|
478 |
+
encoder_extended_attention_mask = None
|
479 |
+
|
480 |
+
# Prepare head mask if needed
|
481 |
+
# 1.0 in head_mask indicate we keep the head
|
482 |
+
# attention_probs has shape bsz x n_heads x N x N
|
483 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
484 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
485 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
486 |
+
|
487 |
+
encoder_outputs = self.encoder(
|
488 |
+
embedding_output,
|
489 |
+
attention_mask=extended_attention_mask,
|
490 |
+
head_mask=head_mask,
|
491 |
+
encoder_hidden_states=encoder_hidden_states,
|
492 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
493 |
+
past_key_values=past_key_values,
|
494 |
+
use_cache=use_cache,
|
495 |
+
output_attentions=output_attentions,
|
496 |
+
output_hidden_states=output_hidden_states,
|
497 |
+
return_dict=return_dict,
|
498 |
+
)
|
499 |
+
sequence_output = encoder_outputs[0]
|
500 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
501 |
+
|
502 |
+
if not return_dict:
|
503 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
504 |
+
|
505 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
506 |
+
last_hidden_state=sequence_output,
|
507 |
+
pooler_output=pooled_output,
|
508 |
+
past_key_values=encoder_outputs.past_key_values,
|
509 |
+
hidden_states=encoder_outputs.hidden_states,
|
510 |
+
attentions=encoder_outputs.attentions,
|
511 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
512 |
+
)
|
513 |
+
|
514 |
+
|
515 |
+
class PureBertForSequenceClassification(PureBertPreTrainedModel):
|
516 |
+
|
517 |
+
def __init__(
|
518 |
+
self,
|
519 |
+
config,
|
520 |
+
label_smoothing=0.0,
|
521 |
+
):
|
522 |
+
super().__init__(config)
|
523 |
+
self.label_smoothing = label_smoothing
|
524 |
+
self.num_labels = config.num_labels
|
525 |
+
self.config = config
|
526 |
+
|
527 |
+
self.bert = PureBertModel(config, add_pooling_layer=False)
|
528 |
+
classifier_dropout = (
|
529 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
530 |
+
)
|
531 |
+
self.pure = PURE(
|
532 |
+
in_dim=config.hidden_size,
|
533 |
+
svd_rank=config.svd_rank,
|
534 |
+
num_pc_to_remove=config.num_pc_to_remove,
|
535 |
+
center=config.center,
|
536 |
+
num_iters=config.num_iters,
|
537 |
+
alpha=config.alpha,
|
538 |
+
disable_pcr=config.disable_pcr,
|
539 |
+
disable_pfsa=config.disable_pfsa,
|
540 |
+
disable_covariance=config.disable_covariance
|
541 |
+
)
|
542 |
+
self.mean = StatisticsPooling(return_mean=True, return_std=False)
|
543 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
544 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
545 |
+
|
546 |
+
# Initialize weights and apply final processing
|
547 |
+
self.post_init()
|
548 |
+
|
549 |
+
def forward_pure_embeddings(
|
550 |
+
self,
|
551 |
+
input_ids: Optional[torch.Tensor] = None,
|
552 |
+
attention_mask: Optional[torch.Tensor] = None,
|
553 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
554 |
+
position_ids: Optional[torch.Tensor] = None,
|
555 |
+
head_mask: Optional[torch.Tensor] = None,
|
556 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
557 |
+
labels: Optional[torch.Tensor] = None,
|
558 |
+
output_attentions: Optional[bool] = None,
|
559 |
+
output_hidden_states: Optional[bool] = None,
|
560 |
+
return_dict: Optional[bool] = None,
|
561 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
562 |
+
r"""
|
563 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
564 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
565 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
566 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
567 |
+
"""
|
568 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
569 |
+
|
570 |
+
outputs = self.bert(
|
571 |
+
input_ids,
|
572 |
+
attention_mask=attention_mask,
|
573 |
+
token_type_ids=token_type_ids,
|
574 |
+
position_ids=position_ids,
|
575 |
+
head_mask=head_mask,
|
576 |
+
inputs_embeds=inputs_embeds,
|
577 |
+
output_attentions=output_attentions,
|
578 |
+
output_hidden_states=output_hidden_states,
|
579 |
+
return_dict=return_dict,
|
580 |
+
)
|
581 |
+
|
582 |
+
token_embeddings = outputs.last_hidden_state
|
583 |
+
token_embeddings = self.pure(token_embeddings, attention_mask)
|
584 |
+
|
585 |
+
return ModelOutput(
|
586 |
+
last_hidden_state=token_embeddings,
|
587 |
+
)
|
588 |
+
|
589 |
+
def forward(
|
590 |
+
self,
|
591 |
+
input_ids: Optional[torch.Tensor] = None,
|
592 |
+
attention_mask: Optional[torch.Tensor] = None,
|
593 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
594 |
+
position_ids: Optional[torch.Tensor] = None,
|
595 |
+
head_mask: Optional[torch.Tensor] = None,
|
596 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
597 |
+
labels: Optional[torch.Tensor] = None,
|
598 |
+
output_attentions: Optional[bool] = None,
|
599 |
+
output_hidden_states: Optional[bool] = None,
|
600 |
+
return_dict: Optional[bool] = None,
|
601 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
602 |
+
r"""
|
603 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
604 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
605 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
606 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
607 |
+
"""
|
608 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
609 |
+
|
610 |
+
outputs = self.bert(
|
611 |
+
input_ids,
|
612 |
+
attention_mask=attention_mask,
|
613 |
+
token_type_ids=token_type_ids,
|
614 |
+
position_ids=position_ids,
|
615 |
+
head_mask=head_mask,
|
616 |
+
inputs_embeds=inputs_embeds,
|
617 |
+
output_attentions=output_attentions,
|
618 |
+
output_hidden_states=output_hidden_states,
|
619 |
+
return_dict=return_dict,
|
620 |
+
)
|
621 |
+
|
622 |
+
token_embeddings = outputs.last_hidden_state
|
623 |
+
token_embeddings = self.pure(token_embeddings, attention_mask)
|
624 |
+
pooled_output = self.mean(token_embeddings).squeeze(1)
|
625 |
+
pooled_output = self.dropout(pooled_output)
|
626 |
+
logits = self.classifier(pooled_output)
|
627 |
+
|
628 |
+
loss = None
|
629 |
+
if labels is not None:
|
630 |
+
if self.config.problem_type is None:
|
631 |
+
if self.num_labels == 1:
|
632 |
+
self.config.problem_type = "regression"
|
633 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
634 |
+
self.config.problem_type = "single_label_classification"
|
635 |
+
else:
|
636 |
+
self.config.problem_type = "multi_label_classification"
|
637 |
+
|
638 |
+
if self.config.problem_type == "regression":
|
639 |
+
loss_fct = nn.MSELoss()
|
640 |
+
if self.num_labels == 1:
|
641 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
642 |
+
else:
|
643 |
+
loss = loss_fct(logits, labels)
|
644 |
+
elif self.config.problem_type == "single_label_classification":
|
645 |
+
loss_fct = nn.CrossEntropyLoss(label_smoothing=self.label_smoothing)
|
646 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
647 |
+
elif self.config.problem_type == "multi_label_classification":
|
648 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
649 |
+
loss = loss_fct(logits, labels)
|
650 |
+
if not return_dict:
|
651 |
+
output = (logits,) + outputs[2:]
|
652 |
+
return ((loss,) + output) if loss is not None else output
|
653 |
+
|
654 |
+
return SequenceClassifierOutput(
|
655 |
+
loss=loss,
|
656 |
+
logits=logits,
|
657 |
+
hidden_states=outputs.hidden_states,
|
658 |
+
attentions=outputs.attentions,
|
659 |
+
)
|
660 |
+
|
661 |
+
|
662 |
+
class PureBertForMultipleChoice(PureBertPreTrainedModel):
|
663 |
+
|
664 |
+
def __init__(
|
665 |
+
self,
|
666 |
+
config,
|
667 |
+
label_smoothing=0.0,
|
668 |
+
):
|
669 |
+
super().__init__(config)
|
670 |
+
self.label_smoothing = label_smoothing
|
671 |
+
|
672 |
+
self.bert = PureBertModel(config)
|
673 |
+
self.pure = PURE(
|
674 |
+
in_dim=config.hidden_size,
|
675 |
+
svd_rank=config.svd_rank,
|
676 |
+
num_pc_to_remove=config.num_pc_to_remove,
|
677 |
+
center=config.center,
|
678 |
+
num_iters=config.num_iters,
|
679 |
+
alpha=config.alpha,
|
680 |
+
disable_pcr=config.disable_pcr,
|
681 |
+
disable_pfsa=config.disable_pfsa,
|
682 |
+
disable_covariance=config.disable_covariance
|
683 |
+
)
|
684 |
+
self.mean = StatisticsPooling(return_mean=True, return_std=False)
|
685 |
+
classifier_dropout = (
|
686 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
687 |
+
)
|
688 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
689 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
690 |
+
|
691 |
+
# Initialize weights and apply final processing
|
692 |
+
self.post_init()
|
693 |
+
|
694 |
+
def forward(
|
695 |
+
self,
|
696 |
+
input_ids: Optional[torch.Tensor] = None,
|
697 |
+
attention_mask: Optional[torch.Tensor] = None,
|
698 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
699 |
+
position_ids: Optional[torch.Tensor] = None,
|
700 |
+
head_mask: Optional[torch.Tensor] = None,
|
701 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
702 |
+
labels: Optional[torch.Tensor] = None,
|
703 |
+
output_attentions: Optional[bool] = None,
|
704 |
+
output_hidden_states: Optional[bool] = None,
|
705 |
+
return_dict: Optional[bool] = None,
|
706 |
+
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
707 |
+
r"""
|
708 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
709 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
710 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
711 |
+
`input_ids` above)
|
712 |
+
"""
|
713 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
714 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
715 |
+
|
716 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
717 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
718 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
719 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
720 |
+
inputs_embeds = (
|
721 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
722 |
+
if inputs_embeds is not None
|
723 |
+
else None
|
724 |
+
)
|
725 |
+
|
726 |
+
outputs = self.bert(
|
727 |
+
input_ids,
|
728 |
+
attention_mask=attention_mask,
|
729 |
+
token_type_ids=token_type_ids,
|
730 |
+
position_ids=position_ids,
|
731 |
+
head_mask=head_mask,
|
732 |
+
inputs_embeds=inputs_embeds,
|
733 |
+
output_attentions=output_attentions,
|
734 |
+
output_hidden_states=output_hidden_states,
|
735 |
+
return_dict=return_dict,
|
736 |
+
)
|
737 |
+
|
738 |
+
token_embeddings = outputs.last_hidden_state
|
739 |
+
token_embeddings = self.pure(token_embeddings, attention_mask)
|
740 |
+
pooled_output = self.mean(token_embeddings).squeeze(1)
|
741 |
+
pooled_output = self.dropout(pooled_output)
|
742 |
+
|
743 |
+
logits = self.classifier(pooled_output)
|
744 |
+
reshaped_logits = logits.view(-1, num_choices)
|
745 |
+
|
746 |
+
loss = None
|
747 |
+
if labels is not None:
|
748 |
+
loss_fct = nn.CrossEntropyLoss(label_smoothing=self.label_smoothing)
|
749 |
+
loss = loss_fct(reshaped_logits, labels)
|
750 |
+
|
751 |
+
if not return_dict:
|
752 |
+
output = (reshaped_logits,) + outputs[2:]
|
753 |
+
return ((loss,) + output) if loss is not None else output
|
754 |
+
|
755 |
+
return MultipleChoiceModelOutput(
|
756 |
+
loss=loss,
|
757 |
+
logits=reshaped_logits,
|
758 |
+
hidden_states=outputs.hidden_states,
|
759 |
+
attentions=outputs.attentions,
|
760 |
+
)
|
761 |
+
|
762 |
+
|
763 |
+
class PureBertForQuestionAnswering(PureBertPreTrainedModel):
|
764 |
+
|
765 |
+
def __init__(
|
766 |
+
self,
|
767 |
+
config,
|
768 |
+
label_smoothing=0.0,
|
769 |
+
):
|
770 |
+
super().__init__(config)
|
771 |
+
self.num_labels = config.num_labels
|
772 |
+
self.label_smoothing = label_smoothing
|
773 |
+
|
774 |
+
self.bert = PureBertModel(config, add_pooling_layer=False)
|
775 |
+
self.pure = PURE(
|
776 |
+
in_dim=config.hidden_size,
|
777 |
+
svd_rank=config.svd_rank,
|
778 |
+
num_pc_to_remove=config.num_pc_to_remove,
|
779 |
+
center=config.center,
|
780 |
+
num_iters=config.num_iters,
|
781 |
+
alpha=config.alpha,
|
782 |
+
disable_pcr=config.disable_pcr,
|
783 |
+
disable_pfsa=config.disable_pfsa,
|
784 |
+
disable_covariance=config.disable_covariance
|
785 |
+
)
|
786 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
787 |
+
|
788 |
+
# Initialize weights and apply final processing
|
789 |
+
self.post_init()
|
790 |
+
|
791 |
+
def forward(
|
792 |
+
self,
|
793 |
+
input_ids: Optional[torch.Tensor] = None,
|
794 |
+
attention_mask: Optional[torch.Tensor] = None,
|
795 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
796 |
+
position_ids: Optional[torch.Tensor] = None,
|
797 |
+
head_mask: Optional[torch.Tensor] = None,
|
798 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
799 |
+
start_positions: Optional[torch.Tensor] = None,
|
800 |
+
end_positions: Optional[torch.Tensor] = None,
|
801 |
+
output_attentions: Optional[bool] = None,
|
802 |
+
output_hidden_states: Optional[bool] = None,
|
803 |
+
return_dict: Optional[bool] = None,
|
804 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
805 |
+
r"""
|
806 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
807 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
808 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
809 |
+
are not taken into account for computing the loss.
|
810 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
811 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
812 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
813 |
+
are not taken into account for computing the loss.
|
814 |
+
"""
|
815 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
816 |
+
|
817 |
+
outputs = self.bert(
|
818 |
+
input_ids,
|
819 |
+
attention_mask=attention_mask,
|
820 |
+
token_type_ids=token_type_ids,
|
821 |
+
position_ids=position_ids,
|
822 |
+
head_mask=head_mask,
|
823 |
+
inputs_embeds=inputs_embeds,
|
824 |
+
output_attentions=output_attentions,
|
825 |
+
output_hidden_states=output_hidden_states,
|
826 |
+
return_dict=return_dict,
|
827 |
+
)
|
828 |
+
|
829 |
+
token_embeddings = outputs.last_hidden_state
|
830 |
+
sequence_output = self.pure(token_embeddings, attention_mask)
|
831 |
+
|
832 |
+
logits = self.qa_outputs(sequence_output)
|
833 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
834 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
835 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
836 |
+
|
837 |
+
total_loss = None
|
838 |
+
if start_positions is not None and end_positions is not None:
|
839 |
+
# If we are on multi-GPU, split add a dimension
|
840 |
+
if len(start_positions.size()) > 1:
|
841 |
+
start_positions = start_positions.squeeze(-1)
|
842 |
+
if len(end_positions.size()) > 1:
|
843 |
+
end_positions = end_positions.squeeze(-1)
|
844 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
845 |
+
ignored_index = start_logits.size(1)
|
846 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
847 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
848 |
+
|
849 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
|
850 |
+
start_loss = loss_fct(start_logits, start_positions)
|
851 |
+
end_loss = loss_fct(end_logits, end_positions)
|
852 |
+
total_loss = (start_loss + end_loss) / 2
|
853 |
+
|
854 |
+
if not return_dict:
|
855 |
+
output = (start_logits, end_logits) + outputs[2:]
|
856 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
857 |
+
|
858 |
+
return QuestionAnsweringModelOutput(
|
859 |
+
loss=total_loss,
|
860 |
+
start_logits=start_logits,
|
861 |
+
end_logits=end_logits,
|
862 |
+
hidden_states=outputs.hidden_states,
|
863 |
+
attentions=outputs.attentions,
|
864 |
+
)
|