End of training
Browse files- README.md +114 -0
- all_results.json +12 -0
- config.json +58 -0
- eval_results.json +8 -0
- model.safetensors +3 -0
- preprocessor_config.json +22 -0
- runs/Dec01_08-55-13_DESKTOP-SKBE9FB/events.out.tfevents.1733064915.DESKTOP-SKBE9FB.14272.0 +3 -0
- runs/Dec01_08-55-13_DESKTOP-SKBE9FB/events.out.tfevents.1733065552.DESKTOP-SKBE9FB.14272.1 +3 -0
- train_results.json +7 -0
- trainer_state.json +483 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: microsoft/swinv2-tiny-patch4-window8-256
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: swinv2-tiny-patch4-window8-256-OT
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: validation
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.8225806451612904
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# swinv2-tiny-patch4-window8-256-OT
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.6192
|
36 |
+
- Accuracy: 0.8226
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 0.00015
|
56 |
+
- train_batch_size: 16
|
57 |
+
- eval_batch_size: 16
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 64
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 40
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| No log | 0.91 | 5 | 8.8439 | 0.0806 |
|
71 |
+
| 8.7922 | 2.0 | 11 | 8.0016 | 0.0806 |
|
72 |
+
| 8.7922 | 2.91 | 16 | 6.0009 | 0.0806 |
|
73 |
+
| 6.5264 | 4.0 | 22 | 2.7431 | 0.0806 |
|
74 |
+
| 6.5264 | 4.91 | 27 | 1.3018 | 0.4516 |
|
75 |
+
| 2.16 | 6.0 | 33 | 1.2696 | 0.4516 |
|
76 |
+
| 2.16 | 6.91 | 38 | 1.2057 | 0.4516 |
|
77 |
+
| 1.2876 | 8.0 | 44 | 1.2157 | 0.4516 |
|
78 |
+
| 1.2876 | 8.91 | 49 | 1.2459 | 0.4516 |
|
79 |
+
| 1.2456 | 10.0 | 55 | 1.2110 | 0.4516 |
|
80 |
+
| 1.1901 | 10.91 | 60 | 1.1861 | 0.4516 |
|
81 |
+
| 1.1901 | 12.0 | 66 | 1.0847 | 0.4677 |
|
82 |
+
| 1.0665 | 12.91 | 71 | 1.0944 | 0.4677 |
|
83 |
+
| 1.0665 | 14.0 | 77 | 1.1854 | 0.4677 |
|
84 |
+
| 1.033 | 14.91 | 82 | 1.0252 | 0.5 |
|
85 |
+
| 1.033 | 16.0 | 88 | 1.2164 | 0.5161 |
|
86 |
+
| 1.0323 | 16.91 | 93 | 1.0643 | 0.5 |
|
87 |
+
| 1.0323 | 18.0 | 99 | 0.9802 | 0.6613 |
|
88 |
+
| 0.9329 | 18.91 | 104 | 0.9475 | 0.5968 |
|
89 |
+
| 0.8619 | 20.0 | 110 | 0.9115 | 0.6452 |
|
90 |
+
| 0.8619 | 20.91 | 115 | 0.8894 | 0.6452 |
|
91 |
+
| 0.8019 | 22.0 | 121 | 0.8276 | 0.6935 |
|
92 |
+
| 0.8019 | 22.91 | 126 | 0.8156 | 0.6774 |
|
93 |
+
| 0.7675 | 24.0 | 132 | 0.7928 | 0.6290 |
|
94 |
+
| 0.7675 | 24.91 | 137 | 0.7163 | 0.7419 |
|
95 |
+
| 0.6762 | 26.0 | 143 | 0.7388 | 0.6774 |
|
96 |
+
| 0.6762 | 26.91 | 148 | 0.6519 | 0.7581 |
|
97 |
+
| 0.6771 | 28.0 | 154 | 0.6710 | 0.7419 |
|
98 |
+
| 0.6771 | 28.91 | 159 | 0.6074 | 0.7581 |
|
99 |
+
| 0.6424 | 30.0 | 165 | 0.6729 | 0.7258 |
|
100 |
+
| 0.6139 | 30.91 | 170 | 0.5744 | 0.7903 |
|
101 |
+
| 0.6139 | 32.0 | 176 | 0.6192 | 0.8226 |
|
102 |
+
| 0.5713 | 32.91 | 181 | 0.6453 | 0.7903 |
|
103 |
+
| 0.5713 | 34.0 | 187 | 0.6392 | 0.7903 |
|
104 |
+
| 0.5462 | 34.91 | 192 | 0.5956 | 0.8226 |
|
105 |
+
| 0.5462 | 36.0 | 198 | 0.5893 | 0.8226 |
|
106 |
+
| 0.5393 | 36.36 | 200 | 0.5898 | 0.8226 |
|
107 |
+
|
108 |
+
|
109 |
+
### Framework versions
|
110 |
+
|
111 |
+
- Transformers 4.36.2
|
112 |
+
- Pytorch 2.1.2+cu118
|
113 |
+
- Datasets 2.16.1
|
114 |
+
- Tokenizers 0.15.0
|
all_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 36.36,
|
3 |
+
"eval_accuracy": 0.8225806451612904,
|
4 |
+
"eval_loss": 0.6192476749420166,
|
5 |
+
"eval_runtime": 2.2055,
|
6 |
+
"eval_samples_per_second": 28.111,
|
7 |
+
"eval_steps_per_second": 1.814,
|
8 |
+
"train_loss": 1.5982162952423096,
|
9 |
+
"train_runtime": 635.1405,
|
10 |
+
"train_samples_per_second": 22.042,
|
11 |
+
"train_steps_per_second": 0.315
|
12 |
+
}
|
config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/swinv2-tiny-patch4-window8-256",
|
3 |
+
"architectures": [
|
4 |
+
"Swinv2ForImageClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"depths": [
|
8 |
+
2,
|
9 |
+
2,
|
10 |
+
6,
|
11 |
+
2
|
12 |
+
],
|
13 |
+
"drop_path_rate": 0.1,
|
14 |
+
"embed_dim": 96,
|
15 |
+
"encoder_stride": 32,
|
16 |
+
"hidden_act": "gelu",
|
17 |
+
"hidden_dropout_prob": 0.0,
|
18 |
+
"hidden_size": 768,
|
19 |
+
"id2label": {
|
20 |
+
"0": "active",
|
21 |
+
"1": "active-inactive",
|
22 |
+
"2": "healthy",
|
23 |
+
"3": "inactive"
|
24 |
+
},
|
25 |
+
"image_size": 256,
|
26 |
+
"initializer_range": 0.02,
|
27 |
+
"label2id": {
|
28 |
+
"active": 0,
|
29 |
+
"active-inactive": 1,
|
30 |
+
"healthy": 2,
|
31 |
+
"inactive": 3
|
32 |
+
},
|
33 |
+
"layer_norm_eps": 1e-05,
|
34 |
+
"mlp_ratio": 4.0,
|
35 |
+
"model_type": "swinv2",
|
36 |
+
"num_channels": 3,
|
37 |
+
"num_heads": [
|
38 |
+
3,
|
39 |
+
6,
|
40 |
+
12,
|
41 |
+
24
|
42 |
+
],
|
43 |
+
"num_layers": 4,
|
44 |
+
"patch_size": 4,
|
45 |
+
"path_norm": true,
|
46 |
+
"pretrained_window_sizes": [
|
47 |
+
0,
|
48 |
+
0,
|
49 |
+
0,
|
50 |
+
0
|
51 |
+
],
|
52 |
+
"problem_type": "single_label_classification",
|
53 |
+
"qkv_bias": true,
|
54 |
+
"torch_dtype": "float32",
|
55 |
+
"transformers_version": "4.36.2",
|
56 |
+
"use_absolute_embeddings": false,
|
57 |
+
"window_size": 8
|
58 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 36.36,
|
3 |
+
"eval_accuracy": 0.8225806451612904,
|
4 |
+
"eval_loss": 0.6192476749420166,
|
5 |
+
"eval_runtime": 2.2055,
|
6 |
+
"eval_samples_per_second": 28.111,
|
7 |
+
"eval_steps_per_second": 1.814
|
8 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3214c6824a0b80c4170aab8f439a40e0105af49a25705134f03e98077009bd31
|
3 |
+
size 110356296
|
preprocessor_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"do_rescale": true,
|
4 |
+
"do_resize": true,
|
5 |
+
"image_mean": [
|
6 |
+
0.485,
|
7 |
+
0.456,
|
8 |
+
0.406
|
9 |
+
],
|
10 |
+
"image_processor_type": "ViTImageProcessor",
|
11 |
+
"image_std": [
|
12 |
+
0.229,
|
13 |
+
0.224,
|
14 |
+
0.225
|
15 |
+
],
|
16 |
+
"resample": 3,
|
17 |
+
"rescale_factor": 0.00392156862745098,
|
18 |
+
"size": {
|
19 |
+
"height": 256,
|
20 |
+
"width": 256
|
21 |
+
}
|
22 |
+
}
|
runs/Dec01_08-55-13_DESKTOP-SKBE9FB/events.out.tfevents.1733064915.DESKTOP-SKBE9FB.14272.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c184e0f04dbf34f59f3d9cc7b4724f7be5a53ee2a5b6763231bc1a38512b8fb
|
3 |
+
size 20077
|
runs/Dec01_08-55-13_DESKTOP-SKBE9FB/events.out.tfevents.1733065552.DESKTOP-SKBE9FB.14272.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ee16268c9dd2b7d3009690c6049a65e008d1528314aeac071ae080fd2bc0b12
|
3 |
+
size 411
|
train_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 36.36,
|
3 |
+
"train_loss": 1.5982162952423096,
|
4 |
+
"train_runtime": 635.1405,
|
5 |
+
"train_samples_per_second": 22.042,
|
6 |
+
"train_steps_per_second": 0.315
|
7 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.8225806451612904,
|
3 |
+
"best_model_checkpoint": "swinv2-tiny-patch4-window8-256-OT\\checkpoint-176",
|
4 |
+
"epoch": 36.36363636363637,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 200,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.91,
|
13 |
+
"eval_accuracy": 0.08064516129032258,
|
14 |
+
"eval_loss": 8.843916893005371,
|
15 |
+
"eval_runtime": 2.8151,
|
16 |
+
"eval_samples_per_second": 22.024,
|
17 |
+
"eval_steps_per_second": 1.421,
|
18 |
+
"step": 5
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"epoch": 1.82,
|
22 |
+
"learning_rate": 7.5e-05,
|
23 |
+
"loss": 8.7922,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 2.0,
|
28 |
+
"eval_accuracy": 0.08064516129032258,
|
29 |
+
"eval_loss": 8.001582145690918,
|
30 |
+
"eval_runtime": 2.1045,
|
31 |
+
"eval_samples_per_second": 29.461,
|
32 |
+
"eval_steps_per_second": 1.901,
|
33 |
+
"step": 11
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 2.91,
|
37 |
+
"eval_accuracy": 0.08064516129032258,
|
38 |
+
"eval_loss": 6.000851154327393,
|
39 |
+
"eval_runtime": 2.0735,
|
40 |
+
"eval_samples_per_second": 29.901,
|
41 |
+
"eval_steps_per_second": 1.929,
|
42 |
+
"step": 16
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"epoch": 3.64,
|
46 |
+
"learning_rate": 0.00015,
|
47 |
+
"loss": 6.5264,
|
48 |
+
"step": 20
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"epoch": 4.0,
|
52 |
+
"eval_accuracy": 0.08064516129032258,
|
53 |
+
"eval_loss": 2.7431113719940186,
|
54 |
+
"eval_runtime": 2.1035,
|
55 |
+
"eval_samples_per_second": 29.475,
|
56 |
+
"eval_steps_per_second": 1.902,
|
57 |
+
"step": 22
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 4.91,
|
61 |
+
"eval_accuracy": 0.45161290322580644,
|
62 |
+
"eval_loss": 1.3018240928649902,
|
63 |
+
"eval_runtime": 2.0906,
|
64 |
+
"eval_samples_per_second": 29.656,
|
65 |
+
"eval_steps_per_second": 1.913,
|
66 |
+
"step": 27
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 5.45,
|
70 |
+
"learning_rate": 0.00014166666666666665,
|
71 |
+
"loss": 2.16,
|
72 |
+
"step": 30
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 6.0,
|
76 |
+
"eval_accuracy": 0.45161290322580644,
|
77 |
+
"eval_loss": 1.2696114778518677,
|
78 |
+
"eval_runtime": 2.0785,
|
79 |
+
"eval_samples_per_second": 29.829,
|
80 |
+
"eval_steps_per_second": 1.924,
|
81 |
+
"step": 33
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 6.91,
|
85 |
+
"eval_accuracy": 0.45161290322580644,
|
86 |
+
"eval_loss": 1.2057440280914307,
|
87 |
+
"eval_runtime": 2.5671,
|
88 |
+
"eval_samples_per_second": 24.152,
|
89 |
+
"eval_steps_per_second": 1.558,
|
90 |
+
"step": 38
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"epoch": 7.27,
|
94 |
+
"learning_rate": 0.0001333333333333333,
|
95 |
+
"loss": 1.2876,
|
96 |
+
"step": 40
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"epoch": 8.0,
|
100 |
+
"eval_accuracy": 0.45161290322580644,
|
101 |
+
"eval_loss": 1.2157402038574219,
|
102 |
+
"eval_runtime": 2.1295,
|
103 |
+
"eval_samples_per_second": 29.115,
|
104 |
+
"eval_steps_per_second": 1.878,
|
105 |
+
"step": 44
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 8.91,
|
109 |
+
"eval_accuracy": 0.45161290322580644,
|
110 |
+
"eval_loss": 1.245875597000122,
|
111 |
+
"eval_runtime": 2.141,
|
112 |
+
"eval_samples_per_second": 28.958,
|
113 |
+
"eval_steps_per_second": 1.868,
|
114 |
+
"step": 49
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 9.09,
|
118 |
+
"learning_rate": 0.000125,
|
119 |
+
"loss": 1.2456,
|
120 |
+
"step": 50
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"epoch": 10.0,
|
124 |
+
"eval_accuracy": 0.45161290322580644,
|
125 |
+
"eval_loss": 1.210959792137146,
|
126 |
+
"eval_runtime": 2.181,
|
127 |
+
"eval_samples_per_second": 28.427,
|
128 |
+
"eval_steps_per_second": 1.834,
|
129 |
+
"step": 55
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 10.91,
|
133 |
+
"learning_rate": 0.00011666666666666665,
|
134 |
+
"loss": 1.1901,
|
135 |
+
"step": 60
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 10.91,
|
139 |
+
"eval_accuracy": 0.45161290322580644,
|
140 |
+
"eval_loss": 1.1861207485198975,
|
141 |
+
"eval_runtime": 2.094,
|
142 |
+
"eval_samples_per_second": 29.608,
|
143 |
+
"eval_steps_per_second": 1.91,
|
144 |
+
"step": 60
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 12.0,
|
148 |
+
"eval_accuracy": 0.46774193548387094,
|
149 |
+
"eval_loss": 1.0847262144088745,
|
150 |
+
"eval_runtime": 2.212,
|
151 |
+
"eval_samples_per_second": 28.028,
|
152 |
+
"eval_steps_per_second": 1.808,
|
153 |
+
"step": 66
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 12.73,
|
157 |
+
"learning_rate": 0.00010833333333333333,
|
158 |
+
"loss": 1.0665,
|
159 |
+
"step": 70
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 12.91,
|
163 |
+
"eval_accuracy": 0.46774193548387094,
|
164 |
+
"eval_loss": 1.0943629741668701,
|
165 |
+
"eval_runtime": 2.08,
|
166 |
+
"eval_samples_per_second": 29.808,
|
167 |
+
"eval_steps_per_second": 1.923,
|
168 |
+
"step": 71
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 14.0,
|
172 |
+
"eval_accuracy": 0.46774193548387094,
|
173 |
+
"eval_loss": 1.1853879690170288,
|
174 |
+
"eval_runtime": 2.093,
|
175 |
+
"eval_samples_per_second": 29.623,
|
176 |
+
"eval_steps_per_second": 1.911,
|
177 |
+
"step": 77
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 14.55,
|
181 |
+
"learning_rate": 9.999999999999999e-05,
|
182 |
+
"loss": 1.033,
|
183 |
+
"step": 80
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 14.91,
|
187 |
+
"eval_accuracy": 0.5,
|
188 |
+
"eval_loss": 1.025220274925232,
|
189 |
+
"eval_runtime": 2.4167,
|
190 |
+
"eval_samples_per_second": 25.655,
|
191 |
+
"eval_steps_per_second": 1.655,
|
192 |
+
"step": 82
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 16.0,
|
196 |
+
"eval_accuracy": 0.5161290322580645,
|
197 |
+
"eval_loss": 1.216417908668518,
|
198 |
+
"eval_runtime": 2.2296,
|
199 |
+
"eval_samples_per_second": 27.808,
|
200 |
+
"eval_steps_per_second": 1.794,
|
201 |
+
"step": 88
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 16.36,
|
205 |
+
"learning_rate": 9.166666666666667e-05,
|
206 |
+
"loss": 1.0323,
|
207 |
+
"step": 90
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 16.91,
|
211 |
+
"eval_accuracy": 0.5,
|
212 |
+
"eval_loss": 1.0642980337142944,
|
213 |
+
"eval_runtime": 2.199,
|
214 |
+
"eval_samples_per_second": 28.194,
|
215 |
+
"eval_steps_per_second": 1.819,
|
216 |
+
"step": 93
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"epoch": 18.0,
|
220 |
+
"eval_accuracy": 0.6612903225806451,
|
221 |
+
"eval_loss": 0.9802310466766357,
|
222 |
+
"eval_runtime": 2.1395,
|
223 |
+
"eval_samples_per_second": 28.979,
|
224 |
+
"eval_steps_per_second": 1.87,
|
225 |
+
"step": 99
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 18.18,
|
229 |
+
"learning_rate": 8.333333333333333e-05,
|
230 |
+
"loss": 0.9329,
|
231 |
+
"step": 100
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 18.91,
|
235 |
+
"eval_accuracy": 0.5967741935483871,
|
236 |
+
"eval_loss": 0.9474769830703735,
|
237 |
+
"eval_runtime": 2.179,
|
238 |
+
"eval_samples_per_second": 28.453,
|
239 |
+
"eval_steps_per_second": 1.836,
|
240 |
+
"step": 104
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 20.0,
|
244 |
+
"learning_rate": 7.5e-05,
|
245 |
+
"loss": 0.8619,
|
246 |
+
"step": 110
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"epoch": 20.0,
|
250 |
+
"eval_accuracy": 0.6451612903225806,
|
251 |
+
"eval_loss": 0.9114610552787781,
|
252 |
+
"eval_runtime": 2.125,
|
253 |
+
"eval_samples_per_second": 29.176,
|
254 |
+
"eval_steps_per_second": 1.882,
|
255 |
+
"step": 110
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 20.91,
|
259 |
+
"eval_accuracy": 0.6451612903225806,
|
260 |
+
"eval_loss": 0.8893528580665588,
|
261 |
+
"eval_runtime": 2.2755,
|
262 |
+
"eval_samples_per_second": 27.246,
|
263 |
+
"eval_steps_per_second": 1.758,
|
264 |
+
"step": 115
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 21.82,
|
268 |
+
"learning_rate": 6.666666666666666e-05,
|
269 |
+
"loss": 0.8019,
|
270 |
+
"step": 120
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"epoch": 22.0,
|
274 |
+
"eval_accuracy": 0.6935483870967742,
|
275 |
+
"eval_loss": 0.8276461958885193,
|
276 |
+
"eval_runtime": 2.182,
|
277 |
+
"eval_samples_per_second": 28.414,
|
278 |
+
"eval_steps_per_second": 1.833,
|
279 |
+
"step": 121
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 22.91,
|
283 |
+
"eval_accuracy": 0.6774193548387096,
|
284 |
+
"eval_loss": 0.8156123757362366,
|
285 |
+
"eval_runtime": 2.1835,
|
286 |
+
"eval_samples_per_second": 28.394,
|
287 |
+
"eval_steps_per_second": 1.832,
|
288 |
+
"step": 126
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"epoch": 23.64,
|
292 |
+
"learning_rate": 5.8333333333333326e-05,
|
293 |
+
"loss": 0.7675,
|
294 |
+
"step": 130
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 24.0,
|
298 |
+
"eval_accuracy": 0.6290322580645161,
|
299 |
+
"eval_loss": 0.7928251624107361,
|
300 |
+
"eval_runtime": 2.7367,
|
301 |
+
"eval_samples_per_second": 22.655,
|
302 |
+
"eval_steps_per_second": 1.462,
|
303 |
+
"step": 132
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 24.91,
|
307 |
+
"eval_accuracy": 0.7419354838709677,
|
308 |
+
"eval_loss": 0.7163397669792175,
|
309 |
+
"eval_runtime": 2.3511,
|
310 |
+
"eval_samples_per_second": 26.371,
|
311 |
+
"eval_steps_per_second": 1.701,
|
312 |
+
"step": 137
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 25.45,
|
316 |
+
"learning_rate": 4.9999999999999996e-05,
|
317 |
+
"loss": 0.6762,
|
318 |
+
"step": 140
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 26.0,
|
322 |
+
"eval_accuracy": 0.6774193548387096,
|
323 |
+
"eval_loss": 0.7387820482254028,
|
324 |
+
"eval_runtime": 2.261,
|
325 |
+
"eval_samples_per_second": 27.421,
|
326 |
+
"eval_steps_per_second": 1.769,
|
327 |
+
"step": 143
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 26.91,
|
331 |
+
"eval_accuracy": 0.7580645161290323,
|
332 |
+
"eval_loss": 0.6518718004226685,
|
333 |
+
"eval_runtime": 2.2715,
|
334 |
+
"eval_samples_per_second": 27.294,
|
335 |
+
"eval_steps_per_second": 1.761,
|
336 |
+
"step": 148
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"epoch": 27.27,
|
340 |
+
"learning_rate": 4.1666666666666665e-05,
|
341 |
+
"loss": 0.6771,
|
342 |
+
"step": 150
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"epoch": 28.0,
|
346 |
+
"eval_accuracy": 0.7419354838709677,
|
347 |
+
"eval_loss": 0.6709696054458618,
|
348 |
+
"eval_runtime": 2.6851,
|
349 |
+
"eval_samples_per_second": 23.09,
|
350 |
+
"eval_steps_per_second": 1.49,
|
351 |
+
"step": 154
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 28.91,
|
355 |
+
"eval_accuracy": 0.7580645161290323,
|
356 |
+
"eval_loss": 0.6073653697967529,
|
357 |
+
"eval_runtime": 2.3635,
|
358 |
+
"eval_samples_per_second": 26.232,
|
359 |
+
"eval_steps_per_second": 1.692,
|
360 |
+
"step": 159
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 29.09,
|
364 |
+
"learning_rate": 3.333333333333333e-05,
|
365 |
+
"loss": 0.6424,
|
366 |
+
"step": 160
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 30.0,
|
370 |
+
"eval_accuracy": 0.7258064516129032,
|
371 |
+
"eval_loss": 0.672946035861969,
|
372 |
+
"eval_runtime": 2.2598,
|
373 |
+
"eval_samples_per_second": 27.436,
|
374 |
+
"eval_steps_per_second": 1.77,
|
375 |
+
"step": 165
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 30.91,
|
379 |
+
"learning_rate": 2.4999999999999998e-05,
|
380 |
+
"loss": 0.6139,
|
381 |
+
"step": 170
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 30.91,
|
385 |
+
"eval_accuracy": 0.7903225806451613,
|
386 |
+
"eval_loss": 0.5744480490684509,
|
387 |
+
"eval_runtime": 2.189,
|
388 |
+
"eval_samples_per_second": 28.323,
|
389 |
+
"eval_steps_per_second": 1.827,
|
390 |
+
"step": 170
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"epoch": 32.0,
|
394 |
+
"eval_accuracy": 0.8225806451612904,
|
395 |
+
"eval_loss": 0.6192476749420166,
|
396 |
+
"eval_runtime": 2.142,
|
397 |
+
"eval_samples_per_second": 28.945,
|
398 |
+
"eval_steps_per_second": 1.867,
|
399 |
+
"step": 176
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 32.73,
|
403 |
+
"learning_rate": 1.6666666666666664e-05,
|
404 |
+
"loss": 0.5713,
|
405 |
+
"step": 180
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 32.91,
|
409 |
+
"eval_accuracy": 0.7903225806451613,
|
410 |
+
"eval_loss": 0.6452686190605164,
|
411 |
+
"eval_runtime": 2.1495,
|
412 |
+
"eval_samples_per_second": 28.844,
|
413 |
+
"eval_steps_per_second": 1.861,
|
414 |
+
"step": 181
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 34.0,
|
418 |
+
"eval_accuracy": 0.7903225806451613,
|
419 |
+
"eval_loss": 0.6392035484313965,
|
420 |
+
"eval_runtime": 2.1965,
|
421 |
+
"eval_samples_per_second": 28.226,
|
422 |
+
"eval_steps_per_second": 1.821,
|
423 |
+
"step": 187
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 34.55,
|
427 |
+
"learning_rate": 8.333333333333332e-06,
|
428 |
+
"loss": 0.5462,
|
429 |
+
"step": 190
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 34.91,
|
433 |
+
"eval_accuracy": 0.8225806451612904,
|
434 |
+
"eval_loss": 0.5955818295478821,
|
435 |
+
"eval_runtime": 2.247,
|
436 |
+
"eval_samples_per_second": 27.592,
|
437 |
+
"eval_steps_per_second": 1.78,
|
438 |
+
"step": 192
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"epoch": 36.0,
|
442 |
+
"eval_accuracy": 0.8225806451612904,
|
443 |
+
"eval_loss": 0.5892814993858337,
|
444 |
+
"eval_runtime": 2.5326,
|
445 |
+
"eval_samples_per_second": 24.481,
|
446 |
+
"eval_steps_per_second": 1.579,
|
447 |
+
"step": 198
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 36.36,
|
451 |
+
"learning_rate": 0.0,
|
452 |
+
"loss": 0.5393,
|
453 |
+
"step": 200
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 36.36,
|
457 |
+
"eval_accuracy": 0.8225806451612904,
|
458 |
+
"eval_loss": 0.5898378491401672,
|
459 |
+
"eval_runtime": 2.2395,
|
460 |
+
"eval_samples_per_second": 27.685,
|
461 |
+
"eval_steps_per_second": 1.786,
|
462 |
+
"step": 200
|
463 |
+
},
|
464 |
+
{
|
465 |
+
"epoch": 36.36,
|
466 |
+
"step": 200,
|
467 |
+
"total_flos": 4.141200256480051e+17,
|
468 |
+
"train_loss": 1.5982162952423096,
|
469 |
+
"train_runtime": 635.1405,
|
470 |
+
"train_samples_per_second": 22.042,
|
471 |
+
"train_steps_per_second": 0.315
|
472 |
+
}
|
473 |
+
],
|
474 |
+
"logging_steps": 10,
|
475 |
+
"max_steps": 200,
|
476 |
+
"num_input_tokens_seen": 0,
|
477 |
+
"num_train_epochs": 40,
|
478 |
+
"save_steps": 500,
|
479 |
+
"total_flos": 4.141200256480051e+17,
|
480 |
+
"train_batch_size": 16,
|
481 |
+
"trial_name": null,
|
482 |
+
"trial_params": null
|
483 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:321e93e7bf62b0b233add9dd1100daadcfb5f668f9371973e023e25b48742f3d
|
3 |
+
size 4728
|