|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging
|
|
from typing import List, Optional
|
|
|
|
import torch
|
|
import tqdm
|
|
import transformers
|
|
|
|
from mergekit.architecture import MISTRAL_INFO, WeightInfo
|
|
from mergekit.moe.arch import MoEOutputArchitecture
|
|
from mergekit.moe.common import initialize_io, noise_and_scale, select_dtype
|
|
from mergekit.moe.config import MoEMergeConfig
|
|
from mergekit.options import MergeOptions
|
|
|
|
|
|
class MixtralMoE(MoEOutputArchitecture):
|
|
def name(self) -> str:
|
|
return "Mixtral"
|
|
|
|
def supports_config(
|
|
self,
|
|
config: MoEMergeConfig,
|
|
explain: bool = False,
|
|
trust_remote_code: bool = False,
|
|
) -> bool:
|
|
if config.shared_experts:
|
|
if explain:
|
|
logging.warning("Mixtral does not support shared experts")
|
|
return False
|
|
|
|
model_types = []
|
|
for model_ref in [config.base_model] + [e.source_model for e in config.experts]:
|
|
model_cfg = model_ref.config(trust_remote_code=trust_remote_code)
|
|
model_types.append(model_cfg.model_type)
|
|
|
|
if len(set(model_types)) != 1:
|
|
if explain:
|
|
logging.warning(
|
|
"Mixtral requires all input models to have the same architecture"
|
|
)
|
|
return False
|
|
if model_types[0] not in ("llama", "mistral"):
|
|
if explain:
|
|
logging.warning(
|
|
"Mixtral requires all input models to be Llama or Mistral models"
|
|
)
|
|
return False
|
|
return True
|
|
|
|
def _generate_config(
|
|
self,
|
|
base_config: transformers.PretrainedConfig,
|
|
num_experts: int,
|
|
shared_experts: Optional[int] = None,
|
|
experts_per_token: Optional[int] = None,
|
|
) -> transformers.PretrainedConfig:
|
|
if shared_experts:
|
|
raise NotImplementedError("Shared experts not supported for Mixtral output")
|
|
|
|
if not isinstance(base_config, transformers.MistralConfig):
|
|
base_cfg_mistral = transformers.MistralConfig(**base_config.to_dict())
|
|
base_cfg_mistral.sliding_window = None
|
|
base_cfg_mistral.max_position_embeddings = (
|
|
base_config.max_position_embeddings
|
|
)
|
|
base_config = base_cfg_mistral
|
|
|
|
out_cfg = transformers.MixtralConfig(**base_config.to_dict())
|
|
out_cfg.architectures = ["MixtralForCausalLM"]
|
|
out_cfg.num_local_experts = num_experts
|
|
out_cfg.num_experts_per_tok = experts_per_token or 2
|
|
out_cfg.sliding_window = None
|
|
|
|
if (out_cfg.num_local_experts & (out_cfg.num_local_experts - 1)) != 0:
|
|
logging.warning(
|
|
f"Your model has {out_cfg.num_local_experts} experts, which is "
|
|
"not a power of two. The model will not be usable in llama.cpp."
|
|
)
|
|
return out_cfg
|
|
|
|
def _remap_weight_name(self, weight: WeightInfo) -> str:
|
|
if ".mlp." not in weight.name:
|
|
|
|
return weight.name
|
|
|
|
res = weight.name
|
|
for needle, replacement in [
|
|
(".mlp.gate_proj", ".block_sparse_moe.experts.{expert_idx}.w1"),
|
|
(".mlp.down_proj", ".block_sparse_moe.experts.{expert_idx}.w2"),
|
|
(".mlp.up_proj", ".block_sparse_moe.experts.{expert_idx}.w3"),
|
|
]:
|
|
res = res.replace(needle, replacement)
|
|
return res
|
|
|
|
def _router_weight_name(self, layer_idx: int) -> str:
|
|
return f"model.layers.{layer_idx}.block_sparse_moe.gate.weight"
|
|
|
|
def write_model(
|
|
self,
|
|
out_path: str,
|
|
config: MoEMergeConfig,
|
|
merge_options: MergeOptions,
|
|
router_weights: List[torch.Tensor],
|
|
shared_router_weights: Optional[List[torch.Tensor]] = None,
|
|
):
|
|
base_model = config.base_model
|
|
base_cfg = base_model.config(trust_remote_code=merge_options.trust_remote_code)
|
|
|
|
assert len(router_weights) == base_cfg.num_hidden_layers, (
|
|
f"Expected {base_cfg.num_hidden_layers} router weights, "
|
|
f"got {len(router_weights)}"
|
|
)
|
|
|
|
out_dtype = select_dtype(config, base_cfg)
|
|
out_cfg = self._generate_config(
|
|
base_cfg,
|
|
len(config.experts),
|
|
len(config.shared_experts or []),
|
|
config.experts_per_token,
|
|
)
|
|
out_cfg.torch_dtype = out_dtype
|
|
out_cfg.save_pretrained(out_path)
|
|
|
|
loaders, base_loader, writer = initialize_io(config, out_path, merge_options)
|
|
for weight_info in tqdm.tqdm(
|
|
MISTRAL_INFO.all_weights(base_cfg),
|
|
desc="Weights",
|
|
):
|
|
tensor_name = self._remap_weight_name(weight_info)
|
|
if "{expert_idx}" in tensor_name:
|
|
for expert_index, expert in enumerate(config.experts):
|
|
expert_name = tensor_name.replace("{expert_idx}", str(expert_index))
|
|
expert_loader = loaders.get(expert.source_model)
|
|
tensor = expert_loader.get_tensor(
|
|
weight_info.name, aliases=weight_info.aliases
|
|
)
|
|
tensor = noise_and_scale(
|
|
tensor, expert, is_residual="down_proj" in tensor_name
|
|
)
|
|
writer.save_tensor(
|
|
expert_name,
|
|
tensor.to(dtype=out_dtype),
|
|
clone=merge_options.clone_tensors,
|
|
)
|
|
else:
|
|
tensor = base_loader.get_tensor(
|
|
tensor_name, aliases=weight_info.aliases
|
|
)
|
|
writer.save_tensor(
|
|
tensor_name,
|
|
tensor.to(dtype=out_dtype),
|
|
clone=merge_options.clone_tensors,
|
|
)
|
|
|
|
for layer_idx, weight in enumerate(
|
|
tqdm.tqdm(router_weights, desc="Router weights")
|
|
):
|
|
writer.save_tensor(
|
|
self._router_weight_name(layer_idx),
|
|
weight.to(dtype=out_dtype).contiguous(),
|
|
clone=merge_options.clone_tensors,
|
|
)
|
|
|
|
writer.finalize()
|
|
|