ppo-LunarLander-v2 / config.json
Atlasbot's picture
publish trained RL lunar lander agent
a485ae2 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cf32b782200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cf32b782290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cf32b782320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cf32b7823b0>", "_build": "<function ActorCriticPolicy._build at 0x7cf32b782440>", "forward": "<function ActorCriticPolicy.forward at 0x7cf32b7824d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cf32b782560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cf32b7825f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7cf32b782680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cf32b782710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cf32b7827a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cf32b782830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cf32b8e2d00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1730462075343088090, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZgurzDQUW66xBlOv906zUV4Y87FseEuQAAgD8AAIA/Mxcsva6fkrq9peu6/hgTN75H97pdjoG2AACAPwAAgD8AGf88JAQhP/oNxzxiZ1K+hIumPESGDj0AAAAAAAAAAIALcT1Flhs//ZBBPe8mh760U7c9MFrvvAAAAAAAAAAAM/KnPG6JuT30AJW968llvsdLJb3omf29AAAAAAAAAACai/68ll6UPzd+S7153qq+4KvQvWhm0rwAAAAAAAAAAM01gr2PYlO6wNNHulbPkLUUmSY7yoFpOQAAgD8AAIA/zUKYPQsXbD+W5WS942m4vg2ZXry7fbS8AAAAAAAAAACa3qg8j7ZKun4nH7hValazdZ+wOTAvOTcAAIA/AACAP43krr1hbEM+n2AmvmUpe75R4m2+AwT8PQAAAAAAAAAAUypHPmAdIz9WE22+gzTKvhAOkT5SuFa+AAAAAAAAAACaaS68FIisugu/hbmmamO0hozXOR4QmTgAAIA/AACAP+ZRCz1cx326J2gFOmJs/DRqDi47pvAbuQAAgD8AAIA/GobFvVIou7mSx8k6TB4BNk2vnrtmRPG5AACAPwAAgD+aE528KSx7um36O7oCRwu2NZAkOxXwWjkAAIA/AACAP419iL3DIUG6+pRhOyaz07YMsF46bzaDugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGapb+cYqG2MAWyUTegDjAF0lEdAlEwKiblRxnV9lChoBkdAZgQvEjxCpmgHTegDaAhHQJRSnuZ1FH91fZQoaAZHQGOd7tiQT25oB03oA2gIR0CUZmxgRbr1dX2UKGgGR0A8DsZ5zHS4aAdL72gIR0CUZsysCDEndX2UKGgGR0BjF2fXf642aAdN6ANoCEdAlGiwarFOwnV9lChoBkdAY4C3Lmp2lmgHTegDaAhHQJR7XLJSzgN1fZQoaAZHQF4izf779AJoB03oA2gIR0CUfaG0u14PdX2UKGgGR0BlkuaKDTScaAdN6ANoCEdAlIMAU1yeZ3V9lChoBkdAZTIjtXxOL2gHTegDaAhHQJSFqkIomXx1fZQoaAZHQE1XrCWNWENoB0vdaAhHQJSItHavicZ1fZQoaAZHQGTvd30PH1hoB03oA2gIR0CUiWUfgaWHdX2UKGgGR0BlMqZrpJPJaAdN6ANoCEdAlJMERODaoXV9lChoBkdAYoJuxbB42WgHTegDaAhHQJSZDSeAd4p1fZQoaAZHQGY5ZuqFRHhoB03oA2gIR0CUmiM1jy4GdX2UKGgGR0BjSMXP7el9aAdN6ANoCEdAlJyKZx7zCnV9lChoBkdAYU0jh1klNWgHTegDaAhHQJSjStRvWH11fZQoaAZHQGEMxLTQVsVoB03oA2gIR0CUpG+TNdJKdX2UKGgGR0BmljRjSXt0aAdN6ANoCEdAlKW61og3cnV9lChoBkdAY45JxvNu+GgHTegDaAhHQJSnTIjnmq51fZQoaAZHQFC5NR3u/lBoB0vAaAhHQJSpIKCxu891fZQoaAZHQGLyBuXNTtNoB03oA2gIR0CUv1531SOzdX2UKGgGR0Bh0pSYPXkHaAdN6ANoCEdAlL+tuHerMnV9lChoBkdAZtvhAGB4EGgHTegDaAhHQJTCgTN+so51fZQoaAZHQGlaJFspG4JoB03oA2gIR0CU3E1LamGedX2UKGgGR0BidLz9S/CZaAdN6ANoCEdAlOJUrCm/FnV9lChoBkdAZWdrxiG34WgHTegDaAhHQJTlZVlwtJ51fZQoaAZHQEwuHNX5nDloB0vRaAhHQJTmJcjZ+QV1fZQoaAZHQGh3A0bcXWRoB03oA2gIR0CU6K8274BWdX2UKGgGR0BnKHnIQvpRaAdN6ANoCEdAlOlmhqTKT3V9lChoBkdAY49ww0wai2gHTegDaAhHQJTyYY3vQWx1fZQoaAZHQGZTmOMl1KZoB03oA2gIR0CU9xaDwpfAdX2UKGgGR0BolUsMAmzCaAdN6ANoCEdAlPfyMo+fRXV9lChoBkdAUqA1ivxH5WgHS+BoCEdAlPkkZm7J4nV9lChoBkdAcbVkcS5AhWgHTVkBaAhHQJT9wInjQzF1fZQoaAZHQGKIgDaGpMpoB03oA2gIR0CVAYX1anrIdX2UKGgGR0BldOC2+fyxaAdN6ANoCEdAlQNOA7Ppp3V9lChoBkdAZXpmxMWXTmgHTegDaAhHQJUFAwTM7lt1fZQoaAZHQGMbeA/cFhZoB03oA2gIR0CVBz1wYLssdX2UKGgGR0Bi8HE87p3YaAdN6ANoCEdAlQnYqslsxnV9lChoBkdATB+dNFjNIWgHS7xoCEdAlQ1X3UQTVXV9lChoBkdAPjsfvF3pwGgHS+RoCEdAlR2ID9wWFnV9lChoBkdAZMcgB91EE2gHTegDaAhHQJUhKBOHnEF1fZQoaAZHQGNS0i6g/TtoB03oA2gIR0CVJAILw4KhdX2UKGgGR0BjMX5tWMjvaAdN6ANoCEdAlSZWjGkvb3V9lChoBkdAZBFH+ZPVNGgHTegDaAhHQJVCSxjawll1fZQoaAZHQGA3CW/rSmZoB03oA2gIR0CVRkldkauPdX2UKGgGR0Blh03n6l+FaAdN6ANoCEdAlUi5PZZjhHV9lChoBkdAYKnBdld1MmgHTegDaAhHQJVSYvZh8Y11fZQoaAZHQFE45le4TbpoB0v0aAhHQJVW0GdI5HV1fZQoaAZHQGb1Yn4O+ZhoB03oA2gIR0CVVtBHkLhKdX2UKGgGR0Bl1XT/hl19aAdN6ANoCEdAlVekY0l7dHV9lChoBkdAZu8Z5zHS4WgHTegDaAhHQJVYr6vaDf51fZQoaAZHQGGcCQLeANJoB03oA2gIR0CVX8DvmYBvdX2UKGgGR0BjBX5tWMjvaAdN6ANoCEdAlWEGiQDFInV9lChoBkdAYgTwKBun/GgHTegDaAhHQJVia2BreqJ1fZQoaAZHQGGNr6k6901oB03oA2gIR0CVZARvFWGRdX2UKGgGR0BCNUedTYNBaAdLymgIR0CVZdq20AtGdX2UKGgGR0BkHldVvMr3aAdN6ANoCEdAlWYMOby6MHV9lChoBkdAcYnuh9LHuWgHTecCaAhHQJVm/9If8uV1fZQoaAZHQHF/S+lCTlloB03JAmgIR0CVfK57PY4AdX2UKGgGR0BmhK1Z1V5saAdN6ANoCEdAlYAtaEBbOnV9lChoBkdAYX1N5+pfhWgHTegDaAhHQJWC/a7EpAl1fZQoaAZHQGRcVpsXSBtoB03oA2gIR0CVhV7UG3WndX2UKGgGR0BeatdeIEbHaAdN6ANoCEdAlZ21NtZV43V9lChoBkdAcWtjm0VrRGgHTXQDaAhHQJWtUMTewcJ1fZQoaAZHQGOZjaPCEYhoB03oA2gIR0CVsXNGViWndX2UKGgGR0Bj8n/tIClraAdN6ANoCEdAlbYhNmDlHXV9lChoBkdAZBEGX5WRzWgHTegDaAhHQJW28oBq9Gt1fZQoaAZHQGatVBUrCnBoB03oA2gIR0CVv0fPHDJmdX2UKGgGR0Bipk7EHdGiaAdN6ANoCEdAlcCFDfFaS3V9lChoBkdAZFscinpB5WgHTegDaAhHQJXB5AX2ugZ1fZQoaAZHQGiRRQBPsRhoB03oA2gIR0CVw3AZbY9QdX2UKGgGR0BwGpJ9RaX8aAdNAwJoCEdAlcR1b7j1f3V9lChoBkdAY17z4k/r0WgHTegDaAhHQJXFKx/ustF1fZQoaAZHQGSkiL2pQ1toB03oA2gIR0CVxVDklu3udX2UKGgGR0BoON6/qPfbaAdN6ANoCEdAlcYowmE5AHV9lChoBkdAY3HzCk43m2gHTegDaAhHQJXVubwz+FV1fZQoaAZHQGI+aBZpztFoB03oA2gIR0CV2ehYeT3ZdX2UKGgGR0BjTVpfx+a0aAdN6ANoCEdAld1VrRBu43V9lChoBkdAYwOCVbA1vWgHTegDaAhHQJXgkzuWrwR1fZQoaAZHQF82+1jRUm5oB03oA2gIR0CWBqnmq5skdX2UKGgGR0BnF8+cH4XXaAdN6ANoCEdAlgru5BkZrHV9lChoBkdAZEMD5j6N2mgHTegDaAhHQJYRyCz1K5F1fZQoaAZHQGWSCSidrftoB03oA2gIR0CWExfwqiGndX2UKGgGR0Bwcz/4qPOqaAdNgwNoCEdAlhdVo11nunV9lChoBkdAYimq5sj3VWgHTegDaAhHQJYdtI8QqZt1fZQoaAZHQGe/TUqhDgJoB03oA2gIR0CWIH/pt78fdX2UKGgGR0Bl2mcpb2UTaAdN6ANoCEdAliJhJ7LMcXV9lChoBkdAYc5Fb3XZoWgHTegDaAhHQJYjnW8RL9N1fZQoaAZHQGbK7Wd3B55oB03oA2gIR0CWJHE8aGYbdX2UKGgGR0Bj9ATTOPeYaAdN6ANoCEdAliSg4XGfgHV9lChoBkdAUTWvZAY51mgHS+BoCEdAliTZowmE5HV9lChoBkdAZa4163RXwWgHTegDaAhHQJYllg6U7jl1fZQoaAZHQGAeUpuuRtBoB03oA2gIR0CWNmCjUNKAdX2UKGgGR0Blf7oIOYplaAdN6ANoCEdAljnlUhmoSHV9lChoBkdAbzOJaaCtimgHTVkBaAhHQJY6zI/7iyZ1fZQoaAZHQGK0IF/x2B9oB03oA2gIR0CWPJdu5z5odX2UKGgGR0BdNdPHktEoaAdN6ANoCEdAlj74Z2pyZXV9lChoBkdAcKglsguAZ2gHTe4BaAhHQJY/mlANXo11fZQoaAZHQHEbybYsd1doB03VAWgIR0CWQu3Ux20RdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}