Atheer174 commited on
Commit
7559a4a
1 Parent(s): 05dcadd

End of training

Browse files
Files changed (1) hide show
  1. README.md +10 -49
README.md CHANGED
@@ -7,6 +7,7 @@ metrics:
7
  - precision
8
  - recall
9
  - f1
 
10
  model-index:
11
  - name: my_awesome_wnut_model3
12
  results: []
@@ -19,24 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  This model is a fine-tuned version of [Atheer174/my_awesome_wnut_model3](https://huggingface.co/Atheer174/my_awesome_wnut_model3) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.0079
23
- - Precision: 0.9980
24
- - Recall: 0.9982
25
- - F1: 0.9981
26
- - Classification Report: precision recall f1-score support
27
-
28
- Country 1.00 1.00 1.00 9877
29
- HSCode 1.00 1.00 1.00 9877
30
- HSCodeEn 1.00 1.00 1.00 9877
31
- Manufacturer 1.00 1.00 1.00 9877
32
- ModelNo 1.00 1.00 1.00 9877
33
- Product 1.00 1.00 1.00 9877
34
- Trademark 1.00 1.00 1.00 9877
35
-
36
- micro avg 1.00 1.00 1.00 69139
37
- macro avg 1.00 1.00 1.00 69139
38
- weighted avg 1.00 1.00 1.00 69139
39
-
40
 
41
  ## Model description
42
 
@@ -61,40 +49,13 @@ The following hyperparameters were used during training:
61
  - seed: 42
62
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
  - lr_scheduler_type: linear
64
- - num_epochs: 2
65
 
66
  ### Training results
67
 
68
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Classification Report |
69
- |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
70
- | 0.0005 | 1.0 | 2470 | 0.0087 | 0.9968 | 0.9977 | 0.9973 | precision recall f1-score support
71
-
72
- Country 1.00 1.00 1.00 9877
73
- HSCode 1.00 1.00 1.00 9877
74
- HSCodeEn 1.00 1.00 1.00 9877
75
- Manufacturer 0.99 0.99 0.99 9877
76
- ModelNo 1.00 1.00 1.00 9877
77
- Product 1.00 1.00 1.00 9877
78
- Trademark 1.00 1.00 1.00 9877
79
-
80
- micro avg 1.00 1.00 1.00 69139
81
- macro avg 1.00 1.00 1.00 69139
82
- weighted avg 1.00 1.00 1.00 69139
83
- |
84
- | 0.0001 | 2.0 | 4940 | 0.0079 | 0.9980 | 0.9982 | 0.9981 | precision recall f1-score support
85
-
86
- Country 1.00 1.00 1.00 9877
87
- HSCode 1.00 1.00 1.00 9877
88
- HSCodeEn 1.00 1.00 1.00 9877
89
- Manufacturer 1.00 1.00 1.00 9877
90
- ModelNo 1.00 1.00 1.00 9877
91
- Product 1.00 1.00 1.00 9877
92
- Trademark 1.00 1.00 1.00 9877
93
-
94
- micro avg 1.00 1.00 1.00 69139
95
- macro avg 1.00 1.00 1.00 69139
96
- weighted avg 1.00 1.00 1.00 69139
97
- |
98
 
99
 
100
  ### Framework versions
 
7
  - precision
8
  - recall
9
  - f1
10
+ - accuracy
11
  model-index:
12
  - name: my_awesome_wnut_model3
13
  results: []
 
20
 
21
  This model is a fine-tuned version of [Atheer174/my_awesome_wnut_model3](https://huggingface.co/Atheer174/my_awesome_wnut_model3) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.0102
24
+ - Precision: 0.9975
25
+ - Recall: 0.9979
26
+ - F1: 0.9977
27
+ - Accuracy: 0.9987
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
  ## Model description
30
 
 
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
+ - num_epochs: 1
53
 
54
  ### Training results
55
 
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.0005 | 1.0 | 2470 | 0.0102 | 0.9975 | 0.9979 | 0.9977 | 0.9987 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
 
61
  ### Framework versions