AtharvGoel commited on
Commit
dedb32e
·
verified ·
1 Parent(s): b5e4305

Model save

Browse files
Files changed (4) hide show
  1. README.md +57 -0
  2. all_results.json +9 -0
  3. train_results.json +9 -0
  4. trainer_state.json +0 -0
README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: barc0/engineer1-heavy-barc-llama3.1-8b-ins-fft-transduction_lr1e-5_epoch3
3
+ library_name: transformers
4
+ model_name: engineer1-heavy-barc-llama3.1-8b-instruct-lora64-testtime-finetuning-additional_data
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - sft
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for engineer1-heavy-barc-llama3.1-8b-instruct-lora64-testtime-finetuning-additional_data
13
+
14
+ This model is a fine-tuned version of [barc0/engineer1-heavy-barc-llama3.1-8b-ins-fft-transduction_lr1e-5_epoch3](https://huggingface.co/barc0/engineer1-heavy-barc-llama3.1-8b-ins-fft-transduction_lr1e-5_epoch3).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="AtharvGoel/engineer1-heavy-barc-llama3.1-8b-instruct-lora64-testtime-finetuning-additional_data", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/atharv_goel/ARC/runs/nfhxx9z7)
31
+
32
+ This model was trained with SFT.
33
+
34
+ ### Framework versions
35
+
36
+ - TRL: 0.12.1
37
+ - Transformers: 4.46.2
38
+ - Pytorch: 2.4.0
39
+ - Datasets: 3.1.0
40
+ - Tokenizers: 0.20.3
41
+
42
+ ## Citations
43
+
44
+
45
+
46
+ Cite TRL as:
47
+
48
+ ```bibtex
49
+ @misc{vonwerra2022trl,
50
+ title = {{TRL: Transformer Reinforcement Learning}},
51
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
52
+ year = 2020,
53
+ journal = {GitHub repository},
54
+ publisher = {GitHub},
55
+ howpublished = {\url{https://github.com/huggingface/trl}}
56
+ }
57
+ ```
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "total_flos": 3.3590634142100357e+18,
4
+ "train_loss": 0.0597018966778148,
5
+ "train_runtime": 119943.6938,
6
+ "train_samples": 16604,
7
+ "train_samples_per_second": 0.415,
8
+ "train_steps_per_second": 0.208
9
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "total_flos": 3.3590634142100357e+18,
4
+ "train_loss": 0.0597018966778148,
5
+ "train_runtime": 119943.6938,
6
+ "train_samples": 16604,
7
+ "train_samples_per_second": 0.415,
8
+ "train_steps_per_second": 0.208
9
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff