Astronomy88
commited on
Commit
•
bf60d0c
1
Parent(s):
5dd6d4e
First trained model
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- lunar_500k.zip +3 -0
- lunar_500k/_stable_baselines3_version +1 -0
- lunar_500k/data +94 -0
- lunar_500k/policy.optimizer.pth +3 -0
- lunar_500k/policy.pth +3 -0
- lunar_500k/pytorch_variables.pth +3 -0
- lunar_500k/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: ppo_mlppolicy
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 218.67 +/- 66.35
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **ppo_mlppolicy** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **ppo_mlppolicy** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd9d70ca7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd9d70ca830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd9d70ca8c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd9d70ca950>", "_build": "<function ActorCriticPolicy._build at 0x7fd9d70ca9e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd9d70caa70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd9d70cab00>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd9d70cab90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd9d70cac20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd9d70cacb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd9d70cad40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd9d71177b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653155588.5621176, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAmvR9Pf415j0KIBO+2khuvucGgb2Odo+9AAAAAAAAAACFPJi+aY4SP3dLIj3MmJm+0TG5vK4d2D0AAAAAAAAAAGPlhz4Gbdg+gQMyvqEMbL5SDpy82xjkvQAAAAAAAAAA2s31vbDYjz92Gw2/qRcLv2uto70KBWS+AAAAAAAAAABjkn6+YXObO40RFrngVXc2J+8rvXYYKjgAAIA/AACAP8ZkgL70ag69Ps2hu5DaF7rolHs+er7iOgAAgD8AAIA/ptW/PYzcqD7p5a69x2s0vmdZa73X34G9AAAAAAAAAADA626+n8anu25YDrkT7Uu2I+cLPdkRJjgAAIA/AACAP0Ahzj3X00S5PR48Nzwr07F5Utq6FjpgtgAAgD8AAIA/M0CKvE8+Rz22m0i9JBkfvmMolbsHmY49AAAAAAAAAADNeOM7XNM+ukUeuboTF7e1XNNhO5651zkAAIA/AACAPybD8z3X3Bq7cPdNO1axUrsBhx48UnQsPAAAgD8AAIA/Uw9rviItkz6R+yO966givlqdL727X1Y9AAAAAAAAAADzenG+FJaAvJl3q7v7ZlE8HlLxPcKP2zsAAAAAAAAAAA1UQT4KsAO74eQavP1Sub0OpJi8RpoMvwAAAAAAAIA/hq1Mvty3RrxwYau7ezmePAZ0rD2j5NW6AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaEC9GTVmakCUhpRSlIwBbJRN7gKMAXSUR0CIjnu5z5oHdX2UKGgGaAloD0MIndSXpZ3NUkCUhpRSlGgVTegDaBZHQIiPJIczZYh1fZQoaAZoCWgPQwifyJOk66thQJSGlFKUaBVN+gJoFkdAiJFDYI0IknV9lChoBmgJaA9DCPIMGvonyC9AlIaUUpRoFU0PAWgWR0CIuKVB2OhkdX2UKGgGaAloD0MIHF97ZklkZUCUhpRSlGgVTegDaBZHQIi6kEgW8Ad1fZQoaAZoCWgPQwinsb0W9GphQJSGlFKUaBVN6ANoFkdAiMXpQ+EAYHV9lChoBmgJaA9DCDBmS1ZFD2BAlIaUUpRoFU3oA2gWR0CIyCWLxZuAdX2UKGgGaAloD0MIkiHH1jNXXECUhpRSlGgVTegDaBZHQIjR/aHsTnJ1fZQoaAZoCWgPQwg2c0hqocxhQJSGlFKUaBVN6ANoFkdAiNTzsyBTXXV9lChoBmgJaA9DCI3Qz9Tr0V9AlIaUUpRoFU3oA2gWR0CI2Pg5R0lrdX2UKGgGaAloD0MIYD/EBgsBTUCUhpRSlGgVTegDaBZHQIjZjpNbkfd1fZQoaAZoCWgPQwgMdy6M9OBUQJSGlFKUaBVN6ANoFkdAiNtEv0yxiXV9lChoBmgJaA9DCE0s8BVdmGRAlIaUUpRoFU32AmgWR0CI3zJeVs1sdX2UKGgGaAloD0MI+FPjpZuOW0CUhpRSlGgVTegDaBZHQIjhxKJ2t+11fZQoaAZoCWgPQwgn+Kbps4RhQJSGlFKUaBVN6ANoFkdAiOVG9QGfPHV9lChoBmgJaA9DCCQp6WFoCTFAlIaUUpRoFU3oA2gWR0CI618k2P1ddX2UKGgGaAloD0MI5jv4icMNcECUhpRSlGgVTekBaBZHQIj18bWEsat1fZQoaAZoCWgPQwgkXp7OFahVQJSGlFKUaBVN6ANoFkdAiPe7el9Br3V9lChoBmgJaA9DCHWSrS6nIFhAlIaUUpRoFU3oA2gWR0CJwQhX8wYcdX2UKGgGaAloD0MI8DFYcaoxV0CUhpRSlGgVTegDaBZHQInBnQjUuth1fZQoaAZoCWgPQwi2vd2SHOZvQJSGlFKUaBVN7gFoFkdAidAtHxz7uXV9lChoBmgJaA9DCJ0std7v7GBAlIaUUpRoFU3oA2gWR0CJ4itCiRGMdX2UKGgGaAloD0MI+ptQiIAcUkCUhpRSlGgVTegDaBZHQInsHBBRhtt1fZQoaAZoCWgPQwjCps6j4kpdQJSGlFKUaBVN6ANoFkdAie3SuQp4KXV9lChoBmgJaA9DCH3nFyXoGW5AlIaUUpRoFU2nA2gWR0CJ7gsmOU+tdX2UKGgGaAloD0MIiV5GsdxiXECUhpRSlGgVTegDaBZHQIn2SGSIP9V1fZQoaAZoCWgPQwhIG0esReNgQJSGlFKUaBVN6ANoFkdAifknmzSkTHV9lChoBmgJaA9DCDS5GAPrwV5AlIaUUpRoFU3oA2gWR0CJ+Zbs4T9LdX2UKGgGaAloD0MIpOAp5EodYECUhpRSlGgVTegDaBZHQIn64E2YOUd1fZQoaAZoCWgPQwjEWnwKgFRbQJSGlFKUaBVN6ANoFkdAif32yTpxFXV9lChoBmgJaA9DCF3eHK5VQmNAlIaUUpRoFU3oA2gWR0CKABzcRDkVdX2UKGgGaAloD0MIorjjTX7hQECUhpRSlGgVS+VoFkdAigI+TmnwX3V9lChoBmgJaA9DCGsRUUzekl1AlIaUUpRoFU3oA2gWR0CKCJ1lGwzMdX2UKGgGaAloD0MIV12HakrZcECUhpRSlGgVTZUDaBZHQIoKhoCdSVJ1fZQoaAZoCWgPQwjnyMovgwxiQJSGlFKUaBVN6ANoFkdAihD4MF2V3XV9lChoBmgJaA9DCBTMmII1bGZAlIaUUpRoFU1dA2gWR0CKGGK9f1HwdX2UKGgGaAloD0MIIVnABO51a0CUhpRSlGgVTQwCaBZHQIod9c2R7qp1fZQoaAZoCWgPQwheu7ThsABYQJSGlFKUaBVN6ANoFkdAiibvugHu7nV9lChoBmgJaA9DCHDpmPNMOnBAlIaUUpRoFU3xAWgWR0CKKKrU9ZA6dX2UKGgGaAloD0MIqRQ7Ggcxa0CUhpRSlGgVTUABaBZHQIopXs1KoQ51fZQoaAZoCWgPQwjx9bUuNSxGQJSGlFKUaBVL+GgWR0CKMkzfrKNidX2UKGgGaAloD0MIVwVqMfgQZECUhpRSlGgVTegDaBZHQIo0Lpqynk11fZQoaAZoCWgPQwhm3NRA8ylhQJSGlFKUaBVN6ANoFkdAikTz8gpz93V9lChoBmgJaA9DCFlN1xNd1GFAlIaUUpRoFU3oA2gWR0CKTxTsIE8rdX2UKGgGaAloD0MIY0Si0LLdW0CUhpRSlGgVTegDaBZHQIpbUgjhUBJ1fZQoaAZoCWgPQwjvx+2XD/dxQJSGlFKUaBVNywNoFkdAil4fbblA/3V9lChoBmgJaA9DCNGt1/TgRHFAlIaUUpRoFU3QAmgWR0CKXu1Aqur7dX2UKGgGaAloD0MINwAbECFPYECUhpRSlGgVTegDaBZHQIpfCUu+RHR1fZQoaAZoCWgPQwhkWTDxR/hhQJSGlFKUaBVN6ANoFkdAimWgkcCHRHV9lChoBmgJaA9DCO8Bui9nGmBAlIaUUpRoFU3oA2gWR0CKaEvZAY51dX2UKGgGaAloD0MIR8oWSbveW0CUhpRSlGgVTegDaBZHQIpq8Z1mrbR1fZQoaAZoCWgPQwhqNLkYg+piQJSGlFKUaBVN6ANoFkdAinVQ4CIUJ3V9lChoBmgJaA9DCMYZw5wgLG9AlIaUUpRoFU0sA2gWR0CKgZlOGj9GdX2UKGgGaAloD0MIjdKlf8l6cUCUhpRSlGgVTV8BaBZHQIqCO4d6syV1fZQoaAZoCWgPQwh/L4UHTf5qQJSGlFKUaBVNVwNoFkdAioTUfgaWHHV9lChoBmgJaA9DCNBgU+dRM0FAlIaUUpRoFU0VAWgWR0CKhzZtelbedX2UKGgGaAloD0MI04VY/ZEtaECUhpRSlGgVTegDaBZHQIqLyCSRr8B1fZQoaAZoCWgPQwjONGH7yTpxQJSGlFKUaBVNXgNoFkdAi0UNAcDKYHV9lChoBmgJaA9DCBsTYi6pm1lAlIaUUpRoFU3oA2gWR0CLShVI7NjcdX2UKGgGaAloD0MIBfwaSYLlU0CUhpRSlGgVTegDaBZHQItWKKm8/Ux1fZQoaAZoCWgPQwj+nlinirJwQJSGlFKUaBVNVQFoFkdAi1rAB1cMVnV9lChoBmgJaA9DCI18XvHU1WNAlIaUUpRoFU3oA2gWR0CLaUpLEk0KdX2UKGgGaAloD0MI2xfQC3fhckCUhpRSlGgVTUkCaBZHQItrlIbwSap1fZQoaAZoCWgPQwgX00z3+vNwQJSGlFKUaBVNNgFoFkdAi25IeYD1XnV9lChoBmgJaA9DCHsQAvIlsmJAlIaUUpRoFU3oA2gWR0CLc4j1wo9cdX2UKGgGaAloD0MIq+y7IvhobkCUhpRSlGgVTbIDaBZHQIt9BUtI0651fZQoaAZoCWgPQwjE6/oFOzhvQJSGlFKUaBVNSQFoFkdAi31dxhlUZXV9lChoBmgJaA9DCI7LuKkBmWRAlIaUUpRoFU3oA2gWR0CLgiCyyD7JdX2UKGgGaAloD0MIkkCDTZ0YY0CUhpRSlGgVTegDaBZHQIuDAaR6nix1fZQoaAZoCWgPQwiK6UKsPitwQJSGlFKUaBVNkANoFkdAi4V+2mYShHV9lChoBmgJaA9DCFlRg2kYoFpAlIaUUpRoFU3oA2gWR0CLiPE/B3zMdX2UKGgGaAloD0MITU7tDFOucECUhpRSlGgVTXQBaBZHQIuREyFfzBh1fZQoaAZoCWgPQwiQaW0a2xMpQJSGlFKUaBVL+GgWR0CLngeiBXjmdX2UKGgGaAloD0MIOGdEaW/Cb0CUhpRSlGgVTXMDaBZHQIufycqe9SN1fZQoaAZoCWgPQwgM6lvmdFliQJSGlFKUaBVN6ANoFkdAi6KAxrSE13V9lChoBmgJaA9DCNofKLft5GFAlIaUUpRoFU3oA2gWR0CLpXwTdtVJdX2UKGgGaAloD0MICwithy/IWkCUhpRSlGgVTegDaBZHQIuntwvQF9t1fZQoaAZoCWgPQwgEAMeePTdrQJSGlFKUaBVNHAFoFkdAi671dX1an3V9lChoBmgJaA9DCFlN1xNd7nFAlIaUUpRoFU31AWgWR0CLsEfOD8LsdX2UKGgGaAloD0MIFXKlngWYW0CUhpRSlGgVTegDaBZHQIuxyxZ+x4Z1fZQoaAZoCWgPQwhNhXgk3kBvQJSGlFKUaBVNTwNoFkdAi7YqEWZZ0XV9lChoBmgJaA9DCFbYDHDBVW5AlIaUUpRoFU2oAmgWR0CLucrhisnzdX2UKGgGaAloD0MIHCWvzjEHb0CUhpRSlGgVTTgCaBZHQIu7zh73PAx1fZQoaAZoCWgPQwjrVzofnmxuQJSGlFKUaBVN/wJoFkdAi71W9lEqlXV9lChoBmgJaA9DCEFEatrFOHFAlIaUUpRoFU11AmgWR0CLwB8b70nPdX2UKGgGaAloD0MI0Joff2ksb0CUhpRSlGgVTScBaBZHQIvBW0JF9a51fZQoaAZoCWgPQwi5GtmVlvJhQJSGlFKUaBVN6ANoFkdAi9BActGutHV9lChoBmgJaA9DCNwRTgtel2BAlIaUUpRoFU3oA2gWR0CL4Hgk1MufdX2UKGgGaAloD0MIdVd2weCqakCUhpRSlGgVTbEDaBZHQIvmm9xp+MJ1fZQoaAZoCWgPQwggJ0wYDfFwQJSGlFKUaBVNlQJoFkdAi+iDHfdhzHV9lChoBmgJaA9DCFoqb0e4pm5AlIaUUpRoFU3iAWgWR0CL8JjT8YQ8dX2UKGgGaAloD0MINNdppKWIcECUhpRSlGgVTfECaBZHQIv48qpcX3x1fZQoaAZoCWgPQwgk06HT841sQJSGlFKUaBVNNANoFkdAjACwzDXOGHV9lChoBmgJaA9DCKbW+412HGRAlIaUUpRoFU3oA2gWR0CMAU/FirksdX2UKGgGaAloD0MImwDD8ucnO8CUhpRSlGgVTQIBaBZHQIwCVENOM2p1fZQoaAZoCWgPQwgSwqONo21gQJSGlFKUaBVN6ANoFkdAjALm8dxQznV9lChoBmgJaA9DCLt7gO4LHnBAlIaUUpRoFU3zAmgWR0CMBAedTYNBdX2UKGgGaAloD0MIG0gXm1bfX0CUhpRSlGgVTegDaBZHQIwFJ/3Fkx11fZQoaAZoCWgPQwhpkIKnkPFLQJSGlFKUaBVL+mgWR0CMCEd4FA3UdX2UKGgGaAloD0MIAOMZNHSAZECUhpRSlGgVTegDaBZHQIwRLP4VRDV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
lunar_500k.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dae526f9c6fe753e3a9524a49a2a61e6a74f660cd2ad643285a98367da82b641
|
3 |
+
size 144214
|
lunar_500k/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
lunar_500k/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd9d70ca7a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd9d70ca830>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd9d70ca8c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd9d70ca950>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd9d70ca9e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd9d70caa70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd9d70cab00>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd9d70cab90>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd9d70cac20>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd9d70cacb0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd9d70cad40>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fd9d71177b0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1653155588.5621176,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAmvR9Pf415j0KIBO+2khuvucGgb2Odo+9AAAAAAAAAACFPJi+aY4SP3dLIj3MmJm+0TG5vK4d2D0AAAAAAAAAAGPlhz4Gbdg+gQMyvqEMbL5SDpy82xjkvQAAAAAAAAAA2s31vbDYjz92Gw2/qRcLv2uto70KBWS+AAAAAAAAAABjkn6+YXObO40RFrngVXc2J+8rvXYYKjgAAIA/AACAP8ZkgL70ag69Ps2hu5DaF7rolHs+er7iOgAAgD8AAIA/ptW/PYzcqD7p5a69x2s0vmdZa73X34G9AAAAAAAAAADA626+n8anu25YDrkT7Uu2I+cLPdkRJjgAAIA/AACAP0Ahzj3X00S5PR48Nzwr07F5Utq6FjpgtgAAgD8AAIA/M0CKvE8+Rz22m0i9JBkfvmMolbsHmY49AAAAAAAAAADNeOM7XNM+ukUeuboTF7e1XNNhO5651zkAAIA/AACAPybD8z3X3Bq7cPdNO1axUrsBhx48UnQsPAAAgD8AAIA/Uw9rviItkz6R+yO966givlqdL727X1Y9AAAAAAAAAADzenG+FJaAvJl3q7v7ZlE8HlLxPcKP2zsAAAAAAAAAAA1UQT4KsAO74eQavP1Sub0OpJi8RpoMvwAAAAAAAIA/hq1Mvty3RrxwYau7ezmePAZ0rD2j5NW6AACAPwAAgD+UdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaEC9GTVmakCUhpRSlIwBbJRN7gKMAXSUR0CIjnu5z5oHdX2UKGgGaAloD0MIndSXpZ3NUkCUhpRSlGgVTegDaBZHQIiPJIczZYh1fZQoaAZoCWgPQwifyJOk66thQJSGlFKUaBVN+gJoFkdAiJFDYI0IknV9lChoBmgJaA9DCPIMGvonyC9AlIaUUpRoFU0PAWgWR0CIuKVB2OhkdX2UKGgGaAloD0MIHF97ZklkZUCUhpRSlGgVTegDaBZHQIi6kEgW8Ad1fZQoaAZoCWgPQwinsb0W9GphQJSGlFKUaBVN6ANoFkdAiMXpQ+EAYHV9lChoBmgJaA9DCDBmS1ZFD2BAlIaUUpRoFU3oA2gWR0CIyCWLxZuAdX2UKGgGaAloD0MIkiHH1jNXXECUhpRSlGgVTegDaBZHQIjR/aHsTnJ1fZQoaAZoCWgPQwg2c0hqocxhQJSGlFKUaBVN6ANoFkdAiNTzsyBTXXV9lChoBmgJaA9DCI3Qz9Tr0V9AlIaUUpRoFU3oA2gWR0CI2Pg5R0lrdX2UKGgGaAloD0MIYD/EBgsBTUCUhpRSlGgVTegDaBZHQIjZjpNbkfd1fZQoaAZoCWgPQwgMdy6M9OBUQJSGlFKUaBVN6ANoFkdAiNtEv0yxiXV9lChoBmgJaA9DCE0s8BVdmGRAlIaUUpRoFU32AmgWR0CI3zJeVs1sdX2UKGgGaAloD0MI+FPjpZuOW0CUhpRSlGgVTegDaBZHQIjhxKJ2t+11fZQoaAZoCWgPQwgn+Kbps4RhQJSGlFKUaBVN6ANoFkdAiOVG9QGfPHV9lChoBmgJaA9DCCQp6WFoCTFAlIaUUpRoFU3oA2gWR0CI618k2P1ddX2UKGgGaAloD0MI5jv4icMNcECUhpRSlGgVTekBaBZHQIj18bWEsat1fZQoaAZoCWgPQwgkXp7OFahVQJSGlFKUaBVN6ANoFkdAiPe7el9Br3V9lChoBmgJaA9DCHWSrS6nIFhAlIaUUpRoFU3oA2gWR0CJwQhX8wYcdX2UKGgGaAloD0MI8DFYcaoxV0CUhpRSlGgVTegDaBZHQInBnQjUuth1fZQoaAZoCWgPQwi2vd2SHOZvQJSGlFKUaBVN7gFoFkdAidAtHxz7uXV9lChoBmgJaA9DCJ0std7v7GBAlIaUUpRoFU3oA2gWR0CJ4itCiRGMdX2UKGgGaAloD0MI+ptQiIAcUkCUhpRSlGgVTegDaBZHQInsHBBRhtt1fZQoaAZoCWgPQwjCps6j4kpdQJSGlFKUaBVN6ANoFkdAie3SuQp4KXV9lChoBmgJaA9DCH3nFyXoGW5AlIaUUpRoFU2nA2gWR0CJ7gsmOU+tdX2UKGgGaAloD0MIiV5GsdxiXECUhpRSlGgVTegDaBZHQIn2SGSIP9V1fZQoaAZoCWgPQwhIG0esReNgQJSGlFKUaBVN6ANoFkdAifknmzSkTHV9lChoBmgJaA9DCDS5GAPrwV5AlIaUUpRoFU3oA2gWR0CJ+Zbs4T9LdX2UKGgGaAloD0MIpOAp5EodYECUhpRSlGgVTegDaBZHQIn64E2YOUd1fZQoaAZoCWgPQwjEWnwKgFRbQJSGlFKUaBVN6ANoFkdAif32yTpxFXV9lChoBmgJaA9DCF3eHK5VQmNAlIaUUpRoFU3oA2gWR0CKABzcRDkVdX2UKGgGaAloD0MIorjjTX7hQECUhpRSlGgVS+VoFkdAigI+TmnwX3V9lChoBmgJaA9DCGsRUUzekl1AlIaUUpRoFU3oA2gWR0CKCJ1lGwzMdX2UKGgGaAloD0MIV12HakrZcECUhpRSlGgVTZUDaBZHQIoKhoCdSVJ1fZQoaAZoCWgPQwjnyMovgwxiQJSGlFKUaBVN6ANoFkdAihD4MF2V3XV9lChoBmgJaA9DCBTMmII1bGZAlIaUUpRoFU1dA2gWR0CKGGK9f1HwdX2UKGgGaAloD0MIIVnABO51a0CUhpRSlGgVTQwCaBZHQIod9c2R7qp1fZQoaAZoCWgPQwheu7ThsABYQJSGlFKUaBVN6ANoFkdAiibvugHu7nV9lChoBmgJaA9DCHDpmPNMOnBAlIaUUpRoFU3xAWgWR0CKKKrU9ZA6dX2UKGgGaAloD0MIqRQ7Ggcxa0CUhpRSlGgVTUABaBZHQIopXs1KoQ51fZQoaAZoCWgPQwjx9bUuNSxGQJSGlFKUaBVL+GgWR0CKMkzfrKNidX2UKGgGaAloD0MIVwVqMfgQZECUhpRSlGgVTegDaBZHQIo0Lpqynk11fZQoaAZoCWgPQwhm3NRA8ylhQJSGlFKUaBVN6ANoFkdAikTz8gpz93V9lChoBmgJaA9DCFlN1xNd1GFAlIaUUpRoFU3oA2gWR0CKTxTsIE8rdX2UKGgGaAloD0MIY0Si0LLdW0CUhpRSlGgVTegDaBZHQIpbUgjhUBJ1fZQoaAZoCWgPQwjvx+2XD/dxQJSGlFKUaBVNywNoFkdAil4fbblA/3V9lChoBmgJaA9DCNGt1/TgRHFAlIaUUpRoFU3QAmgWR0CKXu1Aqur7dX2UKGgGaAloD0MINwAbECFPYECUhpRSlGgVTegDaBZHQIpfCUu+RHR1fZQoaAZoCWgPQwhkWTDxR/hhQJSGlFKUaBVN6ANoFkdAimWgkcCHRHV9lChoBmgJaA9DCO8Bui9nGmBAlIaUUpRoFU3oA2gWR0CKaEvZAY51dX2UKGgGaAloD0MIR8oWSbveW0CUhpRSlGgVTegDaBZHQIpq8Z1mrbR1fZQoaAZoCWgPQwhqNLkYg+piQJSGlFKUaBVN6ANoFkdAinVQ4CIUJ3V9lChoBmgJaA9DCMYZw5wgLG9AlIaUUpRoFU0sA2gWR0CKgZlOGj9GdX2UKGgGaAloD0MIjdKlf8l6cUCUhpRSlGgVTV8BaBZHQIqCO4d6syV1fZQoaAZoCWgPQwh/L4UHTf5qQJSGlFKUaBVNVwNoFkdAioTUfgaWHHV9lChoBmgJaA9DCNBgU+dRM0FAlIaUUpRoFU0VAWgWR0CKhzZtelbedX2UKGgGaAloD0MI04VY/ZEtaECUhpRSlGgVTegDaBZHQIqLyCSRr8B1fZQoaAZoCWgPQwjONGH7yTpxQJSGlFKUaBVNXgNoFkdAi0UNAcDKYHV9lChoBmgJaA9DCBsTYi6pm1lAlIaUUpRoFU3oA2gWR0CLShVI7NjcdX2UKGgGaAloD0MIBfwaSYLlU0CUhpRSlGgVTegDaBZHQItWKKm8/Ux1fZQoaAZoCWgPQwj+nlinirJwQJSGlFKUaBVNVQFoFkdAi1rAB1cMVnV9lChoBmgJaA9DCI18XvHU1WNAlIaUUpRoFU3oA2gWR0CLaUpLEk0KdX2UKGgGaAloD0MI2xfQC3fhckCUhpRSlGgVTUkCaBZHQItrlIbwSap1fZQoaAZoCWgPQwgX00z3+vNwQJSGlFKUaBVNNgFoFkdAi25IeYD1XnV9lChoBmgJaA9DCHsQAvIlsmJAlIaUUpRoFU3oA2gWR0CLc4j1wo9cdX2UKGgGaAloD0MIq+y7IvhobkCUhpRSlGgVTbIDaBZHQIt9BUtI0651fZQoaAZoCWgPQwjE6/oFOzhvQJSGlFKUaBVNSQFoFkdAi31dxhlUZXV9lChoBmgJaA9DCI7LuKkBmWRAlIaUUpRoFU3oA2gWR0CLgiCyyD7JdX2UKGgGaAloD0MIkkCDTZ0YY0CUhpRSlGgVTegDaBZHQIuDAaR6nix1fZQoaAZoCWgPQwiK6UKsPitwQJSGlFKUaBVNkANoFkdAi4V+2mYShHV9lChoBmgJaA9DCFlRg2kYoFpAlIaUUpRoFU3oA2gWR0CLiPE/B3zMdX2UKGgGaAloD0MITU7tDFOucECUhpRSlGgVTXQBaBZHQIuREyFfzBh1fZQoaAZoCWgPQwiQaW0a2xMpQJSGlFKUaBVL+GgWR0CLngeiBXjmdX2UKGgGaAloD0MIOGdEaW/Cb0CUhpRSlGgVTXMDaBZHQIufycqe9SN1fZQoaAZoCWgPQwgM6lvmdFliQJSGlFKUaBVN6ANoFkdAi6KAxrSE13V9lChoBmgJaA9DCNofKLft5GFAlIaUUpRoFU3oA2gWR0CLpXwTdtVJdX2UKGgGaAloD0MICwithy/IWkCUhpRSlGgVTegDaBZHQIuntwvQF9t1fZQoaAZoCWgPQwgEAMeePTdrQJSGlFKUaBVNHAFoFkdAi671dX1an3V9lChoBmgJaA9DCFlN1xNd7nFAlIaUUpRoFU31AWgWR0CLsEfOD8LsdX2UKGgGaAloD0MIFXKlngWYW0CUhpRSlGgVTegDaBZHQIuxyxZ+x4Z1fZQoaAZoCWgPQwhNhXgk3kBvQJSGlFKUaBVNTwNoFkdAi7YqEWZZ0XV9lChoBmgJaA9DCFbYDHDBVW5AlIaUUpRoFU2oAmgWR0CLucrhisnzdX2UKGgGaAloD0MIHCWvzjEHb0CUhpRSlGgVTTgCaBZHQIu7zh73PAx1fZQoaAZoCWgPQwjrVzofnmxuQJSGlFKUaBVN/wJoFkdAi71W9lEqlXV9lChoBmgJaA9DCEFEatrFOHFAlIaUUpRoFU11AmgWR0CLwB8b70nPdX2UKGgGaAloD0MI0Joff2ksb0CUhpRSlGgVTScBaBZHQIvBW0JF9a51fZQoaAZoCWgPQwi5GtmVlvJhQJSGlFKUaBVN6ANoFkdAi9BActGutHV9lChoBmgJaA9DCNwRTgtel2BAlIaUUpRoFU3oA2gWR0CL4Hgk1MufdX2UKGgGaAloD0MIdVd2weCqakCUhpRSlGgVTbEDaBZHQIvmm9xp+MJ1fZQoaAZoCWgPQwggJ0wYDfFwQJSGlFKUaBVNlQJoFkdAi+iDHfdhzHV9lChoBmgJaA9DCFoqb0e4pm5AlIaUUpRoFU3iAWgWR0CL8JjT8YQ8dX2UKGgGaAloD0MINNdppKWIcECUhpRSlGgVTfECaBZHQIv48qpcX3x1fZQoaAZoCWgPQwgk06HT841sQJSGlFKUaBVNNANoFkdAjACwzDXOGHV9lChoBmgJaA9DCKbW+412HGRAlIaUUpRoFU3oA2gWR0CMAU/FirksdX2UKGgGaAloD0MImwDD8ucnO8CUhpRSlGgVTQIBaBZHQIwCVENOM2p1fZQoaAZoCWgPQwgSwqONo21gQJSGlFKUaBVN6ANoFkdAjALm8dxQznV9lChoBmgJaA9DCLt7gO4LHnBAlIaUUpRoFU3zAmgWR0CMBAedTYNBdX2UKGgGaAloD0MIG0gXm1bfX0CUhpRSlGgVTegDaBZHQIwFJ/3Fkx11fZQoaAZoCWgPQwhpkIKnkPFLQJSGlFKUaBVL+mgWR0CMCEd4FA3UdX2UKGgGaAloD0MIAOMZNHSAZECUhpRSlGgVTegDaBZHQIwRLP4VRDV1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 160,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
lunar_500k/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9d175dcafa77ea93ca19dae0a7098f0d746e06db31c85a48020d1b1601acf7f
|
3 |
+
size 84893
|
lunar_500k/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e66dd52c153f42b0db9daf4436cad13818da9cf43ec4bf1c34bdcadb316d2c2c
|
3 |
+
size 43201
|
lunar_500k/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar_500k/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6771ade8ae0a3fe4fef9714b57bcded24ed7a388f06b1aea56d58933de654bf2
|
3 |
+
size 235194
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 218.66742962239724, "std_reward": 66.34833282336704, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-21T18:20:37.675431"}
|