Upload 7 files
Browse files- config.json +81 -0
- depth_anything_v2_vits.pth +3 -0
- iclight_sd15_fbc.safetensors +3 -0
- iclight_sd15_fc.safetensors +3 -0
- preprocessor_config.json +44 -0
- prompt_free_demo.py +104 -0
- sam2_hiera_large.pt +3 -0
config.json
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_commit_hash": null,
|
3 |
+
"architectures": [
|
4 |
+
"DepthAnythingForDepthEstimation"
|
5 |
+
],
|
6 |
+
"backbone": null,
|
7 |
+
"backbone_config": {
|
8 |
+
"architectures": [
|
9 |
+
"Dinov2Model"
|
10 |
+
],
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"image_size": 518,
|
13 |
+
"model_type": "dinov2",
|
14 |
+
"num_attention_heads": 16,
|
15 |
+
"num_hidden_layers": 24,
|
16 |
+
"out_features": [
|
17 |
+
"stage5",
|
18 |
+
"stage12",
|
19 |
+
"stage18",
|
20 |
+
"stage24"
|
21 |
+
],
|
22 |
+
"out_indices": [
|
23 |
+
5,
|
24 |
+
12,
|
25 |
+
18,
|
26 |
+
24
|
27 |
+
],
|
28 |
+
"patch_size": 14,
|
29 |
+
"reshape_hidden_states": false,
|
30 |
+
"stage_names": [
|
31 |
+
"stem",
|
32 |
+
"stage1",
|
33 |
+
"stage2",
|
34 |
+
"stage3",
|
35 |
+
"stage4",
|
36 |
+
"stage5",
|
37 |
+
"stage6",
|
38 |
+
"stage7",
|
39 |
+
"stage8",
|
40 |
+
"stage9",
|
41 |
+
"stage10",
|
42 |
+
"stage11",
|
43 |
+
"stage12",
|
44 |
+
"stage13",
|
45 |
+
"stage14",
|
46 |
+
"stage15",
|
47 |
+
"stage16",
|
48 |
+
"stage17",
|
49 |
+
"stage18",
|
50 |
+
"stage19",
|
51 |
+
"stage20",
|
52 |
+
"stage21",
|
53 |
+
"stage22",
|
54 |
+
"stage23",
|
55 |
+
"stage24"
|
56 |
+
],
|
57 |
+
"torch_dtype": "float32"
|
58 |
+
},
|
59 |
+
"fusion_hidden_size": 256,
|
60 |
+
"head_hidden_size": 32,
|
61 |
+
"head_in_index": -1,
|
62 |
+
"initializer_range": 0.02,
|
63 |
+
"model_type": "depth_anything",
|
64 |
+
"neck_hidden_sizes": [
|
65 |
+
256,
|
66 |
+
512,
|
67 |
+
1024,
|
68 |
+
1024
|
69 |
+
],
|
70 |
+
"patch_size": 14,
|
71 |
+
"reassemble_factors": [
|
72 |
+
4,
|
73 |
+
2,
|
74 |
+
1,
|
75 |
+
0.5
|
76 |
+
],
|
77 |
+
"reassemble_hidden_size": 1024,
|
78 |
+
"torch_dtype": "float32",
|
79 |
+
"transformers_version": null,
|
80 |
+
"use_pretrained_backbone": false
|
81 |
+
}
|
depth_anything_v2_vits.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:715fade13be8f229f8a70cc02066f656f2423a59effd0579197bbf57860e1378
|
3 |
+
size 99218434
|
iclight_sd15_fbc.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb8ccedaa4944b16cfa8356afcbc2c2174cc4c4af57de19124ae0cddd0d96947
|
3 |
+
size 1719171352
|
iclight_sd15_fc.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a033fbaaa2f3f7859fa6a4477ee63ebbf9c116bf3569d5811856d2807f3468cd
|
3 |
+
size 1719148312
|
preprocessor_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_valid_processor_keys": [
|
3 |
+
"images",
|
4 |
+
"do_resize",
|
5 |
+
"size",
|
6 |
+
"keep_aspect_ratio",
|
7 |
+
"ensure_multiple_of",
|
8 |
+
"resample",
|
9 |
+
"do_rescale",
|
10 |
+
"rescale_factor",
|
11 |
+
"do_normalize",
|
12 |
+
"image_mean",
|
13 |
+
"image_std",
|
14 |
+
"do_pad",
|
15 |
+
"size_divisor",
|
16 |
+
"return_tensors",
|
17 |
+
"data_format",
|
18 |
+
"input_data_format"
|
19 |
+
],
|
20 |
+
"do_normalize": true,
|
21 |
+
"do_pad": false,
|
22 |
+
"do_rescale": true,
|
23 |
+
"do_resize": true,
|
24 |
+
"ensure_multiple_of": 14,
|
25 |
+
"image_mean": [
|
26 |
+
0.485,
|
27 |
+
0.456,
|
28 |
+
0.406
|
29 |
+
],
|
30 |
+
"image_processor_type": "DPTImageProcessor",
|
31 |
+
"image_std": [
|
32 |
+
0.229,
|
33 |
+
0.224,
|
34 |
+
0.225
|
35 |
+
],
|
36 |
+
"keep_aspect_ratio": true,
|
37 |
+
"resample": 3,
|
38 |
+
"rescale_factor": 0.00392156862745098,
|
39 |
+
"size": {
|
40 |
+
"height": 518,
|
41 |
+
"width": 518
|
42 |
+
},
|
43 |
+
"size_divisor": null
|
44 |
+
}
|
prompt_free_demo.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dds cloudapi for DINO-X
|
2 |
+
from dds_cloudapi_sdk import Config
|
3 |
+
from dds_cloudapi_sdk import Client
|
4 |
+
from dds_cloudapi_sdk.tasks.dinox import DinoxTask
|
5 |
+
from dds_cloudapi_sdk.tasks.detection import DetectionTask
|
6 |
+
from dds_cloudapi_sdk.tasks.types import DetectionTarget
|
7 |
+
from dds_cloudapi_sdk import TextPrompt
|
8 |
+
|
9 |
+
# using supervision for visualization
|
10 |
+
import os
|
11 |
+
import cv2
|
12 |
+
import numpy as np
|
13 |
+
import supervision as sv
|
14 |
+
from pathlib import Path
|
15 |
+
|
16 |
+
import gradio as gr
|
17 |
+
|
18 |
+
|
19 |
+
"""
|
20 |
+
Hyper Parameters
|
21 |
+
"""
|
22 |
+
API_TOKEN = "Your API Token"
|
23 |
+
IMG_PATH = "demo2.jpg"
|
24 |
+
TEXT_PROMPT = "<prompt_free>"
|
25 |
+
OUTPUT_DIR = Path("./outputs/prompt_free_detection_segmentation")
|
26 |
+
|
27 |
+
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
|
28 |
+
|
29 |
+
"""
|
30 |
+
Prompting DINO-X with Text for Box and Mask Generation with Cloud API
|
31 |
+
"""
|
32 |
+
|
33 |
+
# Step 1: initialize the config
|
34 |
+
token = API_TOKEN
|
35 |
+
config = Config(token)
|
36 |
+
|
37 |
+
# Step 2: initialize the client
|
38 |
+
client = Client(config)
|
39 |
+
|
40 |
+
# Step 3: Run DINO-X task
|
41 |
+
# if you are processing local image file, upload them to DDS server to get the image url
|
42 |
+
image_url = client.upload_file(IMG_PATH)
|
43 |
+
|
44 |
+
task = DinoxTask(
|
45 |
+
image_url=image_url,
|
46 |
+
prompts=[TextPrompt(text=TEXT_PROMPT)],
|
47 |
+
bbox_threshold=0.25,
|
48 |
+
targets=[DetectionTarget.BBox, DetectionTarget.Mask]
|
49 |
+
)
|
50 |
+
client.run_task(task)
|
51 |
+
predictions = task.result.objects
|
52 |
+
|
53 |
+
"""
|
54 |
+
Visualization
|
55 |
+
"""
|
56 |
+
# decode the prediction results
|
57 |
+
classes = [pred.category for pred in predictions]
|
58 |
+
classes = list(set(classes))
|
59 |
+
class_name_to_id = {name: id for id, name in enumerate(classes)}
|
60 |
+
class_id_to_name = {id: name for name, id in class_name_to_id.items()}
|
61 |
+
|
62 |
+
boxes = []
|
63 |
+
masks = []
|
64 |
+
confidences = []
|
65 |
+
class_names = []
|
66 |
+
class_ids = []
|
67 |
+
|
68 |
+
for idx, obj in enumerate(predictions):
|
69 |
+
boxes.append(obj.bbox)
|
70 |
+
masks.append(DetectionTask.rle2mask(DetectionTask.string2rle(obj.mask.counts), obj.mask.size)) # convert mask to np.array using DDS API
|
71 |
+
confidences.append(obj.score)
|
72 |
+
cls_name = obj.category.lower().strip()
|
73 |
+
class_names.append(cls_name)
|
74 |
+
class_ids.append(class_name_to_id[cls_name])
|
75 |
+
|
76 |
+
boxes = np.array(boxes)
|
77 |
+
masks = np.array(masks)
|
78 |
+
class_ids = np.array(class_ids)
|
79 |
+
labels = [
|
80 |
+
f"{class_name} {confidence:.2f}"
|
81 |
+
for class_name, confidence
|
82 |
+
in zip(class_names, confidences)
|
83 |
+
]
|
84 |
+
|
85 |
+
img = cv2.imread(IMG_PATH)
|
86 |
+
detections = sv.Detections(
|
87 |
+
xyxy = boxes,
|
88 |
+
mask = masks.astype(bool),
|
89 |
+
class_id = class_ids,
|
90 |
+
)
|
91 |
+
|
92 |
+
box_annotator = sv.BoxAnnotator()
|
93 |
+
annotated_frame = box_annotator.annotate(scene=img.copy(), detections=detections)
|
94 |
+
|
95 |
+
label_annotator = sv.LabelAnnotator()
|
96 |
+
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
|
97 |
+
cv2.imwrite(os.path.join(OUTPUT_DIR, "annotated_demo_image.jpg"), annotated_frame)
|
98 |
+
|
99 |
+
|
100 |
+
mask_annotator = sv.MaskAnnotator()
|
101 |
+
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
|
102 |
+
cv2.imwrite(os.path.join(OUTPUT_DIR, "annotated_demo_image_with_mask.jpg"), annotated_frame)
|
103 |
+
|
104 |
+
print(f"Annotated image has already been saved to {OUTPUT_DIR}")
|
sam2_hiera_large.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7442e4e9b732a508f80e141e7c2913437a3610ee0c77381a66658c3a445df87b
|
3 |
+
size 897952466
|