ppo-LunarLander-v2 / config.json
AshishPanchal's picture
PPO-LunarLader-v2-Unit-1
0991a55 verified
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b3839c0e3b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b3839c0e440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b3839c0e4d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b3839c0e560>", "_build": "<function ActorCriticPolicy._build at 0x7b3839c0e5f0>", "forward": "<function ActorCriticPolicy.forward at 0x7b3839c0e680>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b3839c0e710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b3839c0e7a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b3839c0e830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b3839c0e8c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b3839c0e950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b3839c0e9e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b3839c18640>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710390888892986425, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEA8j732JGC6kHvntkblGbKgpsY654gHNgAAgD8AAIA/M3BovSnQcLrKMVK6N/CGtTNdPjvIsnM5AACAPwAAgD+zLCI9FIKLuu+KlLuwZa01/G4mu7DkG7UAAIA/AACAP7Pfdr2uebK6GmeytsnxprFqJFO5I57NNQAAgD8AAIA/jeAqviFbgLzzgU28LAPMuvI62z0c3qI7AACAPwAAgD+tAyO+9dyPP0Rdq74hkL6+XfJLviKOz70AAAAAAAAAAMB+2T1TgO8+O9BVvkf9qL73oba9SkeVvAAAAAAAAAAAGnZ+vaQbBbumjY+7QbqvO57ABDzqdKi8AACAPwAAgD8N87K9wyl1uoOqzDuK7b28icJtOnkQpj0AAAAAAAAAAOb1a70UTpi6/n+quLZl9riYuQg7XasYOAAAgD8AAIA/rUh3PqPNdT/IU/+8pOWZvg3WND5s0pi7AAAAAAAAAADNIM+8wyV/upDTeTuABKM4wysjO+nZEboAAIA/AACAP+YMFz1Iv5q6T1oXtMTmBbCHv8E6MIirMwAAgD8AAIA/mmTyvE8uLrxy/0U9n7kEvv36/LxKcI++AACAPwAAgD9mpO09eliQP8xRjT5+M4W+PSLtPZ6w/j0AAAAAAAAAAABQc71+iL0/xZQCvzZ5GD7W0hO668L3vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFrhJwbVBleMAWyUTegDjAF0lEdAkY7FLrX18XV9lChoBkdAZiqj2SMcZWgHTegDaAhHQJGanCQ9zOp1fZQoaAZHQGcZEnTiKixoB03oA2gIR0CRnBO9WZJDdX2UKGgGR0Bh8b/ffoA5aAdN6ANoCEdAkaV8Oby6MHV9lChoBkdAZJa0DU3GXGgHTegDaAhHQJGuCUzKs+51fZQoaAZHQF/kvCdjG1hoB03oA2gIR0CRrzoDPnjidX2UKGgGR0BhnNsguAZsaAdN6ANoCEdAka9Xh4t6HHV9lChoBkdAZoJTdcjZ+WgHTegDaAhHQJHHwxN7Bwd1fZQoaAZHQGQETAWSEDhoB03oA2gIR0CRyMQfZElWdX2UKGgGR0Bj/JOHnEEUaAdN6ANoCEdAkcvoD5j6N3V9lChoBkdAYSIF6AvtdGgHTegDaAhHQJHP3Wf9P1t1fZQoaAZHQGPVD4593KVoB03oA2gIR0CR1n8TSLIgdX2UKGgGR0BhXdTisGPgaAdN6ANoCEdAkdeKB/Zuh3V9lChoBkdAXupmL9/BnGgHTegDaAhHQJHb5HZsbed1fZQoaAZHQGOQXtrsSkFoB03oA2gIR0CR3ZOrQw9JdX2UKGgGR0BlfPpwCKaYaAdN6ANoCEdAkd8bL6k693V9lChoBkdAYtyE/0NBnmgHTegDaAhHQJHjOYw7DEZ1fZQoaAZHQGKLlspG4I9oB03oA2gIR0CR8HiGWUr1dX2UKGgGR0Bgv8hC+lCUaAdN6ANoCEdAkfHvrfLs8nV9lChoBkdAX3Tf+CK77WgHTegDaAhHQJH67BVMmF91fZQoaAZHQF7CgLqlgtxoB03oA2gIR0CSA7eWv8qGdX2UKGgGR0BicZlFtsN2aAdN6ANoCEdAkgTszhxYJXV9lChoBkdAY2bTZQHiWGgHTegDaAhHQJIFDOSntOV1fZQoaAZHQGBP20zCUHJoB03oA2gIR0CSHaieumrKdX2UKGgGR0BixUH+qBEsaAdN6ANoCEdAkh6r1AZ88nV9lChoBkdAZuawPiDM/2gHTegDaAhHQJIh1hb4agp1fZQoaAZHQGEjhPTG5tpoB03oA2gIR0CSJb85CF9KdX2UKGgGR0Bi+V1EE1VHaAdN6ANoCEdAkiw/3FkxynV9lChoBkdAZ/lOZ9d/rmgHTegDaAhHQJItL/xUedV1fZQoaAZHQGOQCHymQ8xoB03oA2gIR0CSMS/gR9PUdX2UKGgGR0BnOQUQCjk/aAdN6ANoCEdAkjK5jx0+1XV9lChoBkdAZuyRmseXA2gHTegDaAhHQJI0DFglWwN1fZQoaAZHQGBAPkJa7mNoB03oA2gIR0CSNv7Ackt3dX2UKGgGR0A3KBBRhttRaAdNAAFoCEdAkj+MHfMwDnV9lChoBkdAYQ6dYnv2G2gHTegDaAhHQJJB5QsPJ7t1fZQoaAZHQGZkFpXZGrloB03oA2gIR0CSQ5iT+vQodX2UKGgGR0BgUw5vLowFaAdN6ANoCEdAkk174SHuZ3V9lChoBkdAYt2KAJ9iMGgHTegDaAhHQJJVVffGdZt1fZQoaAZHQF7b4gzP8htoB03oA2gIR0CSVoDNyHVPdX2UKGgGR0Bih9aB7NSqaAdN6ANoCEdAklafio86m3V9lChoBkdAY6yR3/xUemgHTegDaAhHQJJs5/b0voN1fZQoaAZHQF1ZmMwUQCloB03oA2gIR0CSbhM36yjYdX2UKGgGR0BlxB7JGOMmaAdN6ANoCEdAknK11jiGWXV9lChoBkdAY2hDhLoOhGgHTegDaAhHQJJ5rfwZwXJ1fZQoaAZHQGhWRPO6d2BoB03oA2gIR0CSgOBWxQizdX2UKGgGR0BjdLtsvZh8aAdN6ANoCEdAkoHJ40Mw13V9lChoBkdAXVT+FUQ042gHTegDaAhHQJKHX668QI51fZQoaAZHQGPlLTx5LRNoB03oA2gIR0CSiLo3aSLZdX2UKGgGR0BgqLBVMmF8aAdN6ANoCEdAkou1PN3W4HV9lChoBkdAZgkdIXj2jGgHTegDaAhHQJKTn5YYBNp1fZQoaAZHQGHmzLOiWVxoB03oA2gIR0CSlUF/hESedX2UKGgGR0BkDeFcpsoEaAdN6ANoCEdAkpZe8kD6nHV9lChoBkdAYXBeVLSNO2gHTegDaAhHQJKdqPaL4vh1fZQoaAZHQG3v+4Cp3otoB02DAmgIR0CSnj8lXzUadX2UKGgGR0Bluj/2kBS2aAdN6ANoCEdAkqRSrDIiknV9lChoBkdAYb7mnwXqJWgHTegDaAhHQJKlqEVWS2Z1fZQoaAZHQGC7rTpgTh5oB03oA2gIR0CSpc1HvttzdX2UKGgGR0BhS3ZIxxkvaAdN6ANoCEdAkquEkGA09HV9lChoBkdAYRaXN1QqJGgHTegDaAhHQJK+oS7GvOh1fZQoaAZHQGPR6D5CWu5oB03oA2gIR0CSwZn3ta6jdX2UKGgGR0BgVDEgntv5aAdN6ANoCEdAkswH/tICl3V9lChoBkdAYbMy3Td+HGgHTegDaAhHQJLNBZX+2mZ1fZQoaAZHQGJRgFgUlAxoB03oA2gIR0CS0s5GjKxLdX2UKGgGR0Bl/jC79Q40aAdN6ANoCEdAktRAwfyPMnV9lChoBkdAcbYeLNwBHWgHTQECaAhHQJLXd3xFy7x1fZQoaAZHQGCsz8gpz91oB03oA2gIR0CS2FWJJoTPdX2UKGgGR8A0e8PFvQ4TaAdLxGgIR0CS2cTOPeYVdX2UKGgGR0BniapFTefqaAdN6ANoCEdAkuE4An2IwnV9lChoBkdAZ7T1fVqesmgHTegDaAhHQJLi9YwIt191fZQoaAZHQGDk+OXE61doB03oA2gIR0CS5A8tf5UMdX2UKGgGR0BwlqZmZmZmaAdN7wJoCEdAkukzn3cpLHV9lChoBkdAZEDrrPdEcGgHTegDaAhHQJLqf5/LDAJ1fZQoaAZHQGQwrn1WbPRoB03oA2gIR0CS6wxx1gYxdX2UKGgGR0BmbfIEKVpsaAdN6ANoCEdAkvDxyXD3unV9lChoBkdAYdWGqxTsIGgHTegDaAhHQJLyIYuTRpl1fZQoaAZHQF2FMNtqHoJoB03oA2gIR0CS948BMi8ndX2UKGgGR0BwaeFUQ04zaAdNFwNoCEdAkwyuGbkOqnV9lChoBkdAY4z9JjDsMWgHTegDaAhHQJMOVZDArQR1fZQoaAZHQHD5K4+bExZoB03cAmgIR0CTEQKP4mCzdX2UKGgGR0BHka86FM7EaAdLx2gIR0CTHUOrQw9JdX2UKGgGR0Br2n8XN1QqaAdNzANoCEdAkx5bD2rXDnV9lChoBkdAceGZXdTHbWgHTTICaAhHQJMeiGKyfL91fZQoaAZHQHCMCQkona5oB01VAWgIR0CTIvkdV/+bdX2UKGgGR0Bk3SQT238XaAdN6ANoCEdAkyPWpVCHAXV9lChoBkdAYcOrWAf+0mgHTegDaAhHQJMkd7laKUF1fZQoaAZHQGSWFD4QBghoB03oA2gIR0CTJYRkmQbNdX2UKGgGR0BPEjm8ujASaAdL2WgIR0CTKdYL9deIdX2UKGgGR0BgdNRm9QGfaAdN6ANoCEdAkyupmNBF/nV9lChoBkdAY0t3qzJIUmgHTegDaAhHQJMtOWkadc11fZQoaAZHQGDzVwHZ9NNoB03oA2gIR0CTLjsSkCV9dX2UKGgGR0Bule9zwMH9aAdN/wJoCEdAkzBEeEIw/XV9lChoBkdAY3X5GjKxLWgHTegDaAhHQJMzaeUY8+11fZQoaAZHQHECcsxwhntoB022AWgIR0CTM7XYDklvdX2UKGgGR0BxAOtQsPJ8aAdNVgFoCEdAkzR6C+UQkHV9lChoBkdAZu5hegL7XWgHTegDaAhHQJM1bVH4Glh1fZQoaAZHQF8FwnYxtYVoB03oA2gIR0CTPOx0+1SgdX2UKGgGR0BuREJa7mMgaAdNhgFoCEdAk0EeLR8c/HV9lChoBkdAZAUIbfgrH2gHTegDaAhHQJNC7PJJXhh1fZQoaAZHQHC8KiO/+KloB03SAWgIR0CTQyGtITXbdX2UKGgGR0BfIksFt8/maAdN6ANoCEdAk0QzzZpSJnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}