AshishFugare nielsr HF staff commited on
Commit
4e95534
0 Parent(s):

Duplicate from Salesforce/blip2-opt-2.7b

Browse files

Co-authored-by: Niels Rogge <nielsr@users.noreply.huggingface.co>

.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ tags:
5
+ - vision
6
+ - image-to-text
7
+ - image-captioning
8
+ - visual-question-answering
9
+ pipeline_tag: image-to-text
10
+ ---
11
+
12
+ # BLIP-2, OPT-2.7b, pre-trained only
13
+
14
+ BLIP-2 model, leveraging [OPT-2.7b](https://huggingface.co/facebook/opt-2.7b) (a large language model with 2.7 billion parameters).
15
+ It was introduced in the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Li et al. and first released in [this repository](https://github.com/salesforce/LAVIS/tree/main/projects/blip2).
16
+
17
+ Disclaimer: The team releasing BLIP-2 did not write a model card for this model so this model card has been written by the Hugging Face team.
18
+
19
+ ## Model description
20
+
21
+ BLIP-2 consists of 3 models: a CLIP-like image encoder, a Querying Transformer (Q-Former) and a large language model.
22
+
23
+ The authors initialize the weights of the image encoder and large language model from pre-trained checkpoints and keep them frozen
24
+ while training the Querying Transformer, which is a BERT-like Transformer encoder that maps a set of "query tokens" to query embeddings,
25
+ which bridge the gap between the embedding space of the image encoder and the large language model.
26
+
27
+ The goal for the model is simply to predict the next text token, giving the query embeddings and the previous text.
28
+
29
+ <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/blip2_architecture.jpg"
30
+ alt="drawing" width="600"/>
31
+
32
+ This allows the model to be used for tasks like:
33
+
34
+ - image captioning
35
+ - visual question answering (VQA)
36
+ - chat-like conversations by feeding the image and the previous conversation as prompt to the model
37
+
38
+ ## Direct Use and Downstream Use
39
+
40
+ You can use the raw model for conditional text generation given an image and optional text. See the [model hub](https://huggingface.co/models?search=Salesforce/blip) to look for
41
+ fine-tuned versions on a task that interests you.
42
+
43
+ ## Bias, Risks, Limitations, and Ethical Considerations
44
+
45
+ BLIP2-OPT uses off-the-shelf OPT as the language model. It inherits the same risks and limitations as mentioned in Meta's model card.
46
+
47
+ > Like other large language models for which the diversity (or lack thereof) of training
48
+ > data induces downstream impact on the quality of our model, OPT-175B has limitations in terms
49
+ > of bias and safety. OPT-175B can also have quality issues in terms of generation diversity and
50
+ > hallucination. In general, OPT-175B is not immune from the plethora of issues that plague modern
51
+ > large language models.
52
+ >
53
+ BLIP2 is fine-tuned on image-text datasets (e.g. [LAION](https://laion.ai/blog/laion-400-open-dataset/) ) collected from the internet. As a result the model itself is potentially vulnerable to generating equivalently inappropriate content or replicating inherent biases in the underlying data.
54
+
55
+ BLIP2 has not been tested in real world applications. It should not be directly deployed in any applications. Researchers should first carefully assess the safety and fairness of the model in relation to the specific context they’re being deployed within.
56
+
57
+
58
+ ### How to use
59
+
60
+ For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/blip-2#transformers.Blip2ForConditionalGeneration.forward.example).
61
+
62
+ ### Memory requirements
63
+
64
+ The memory requirements differ based on the precision one uses. One can use 4-bit inference using [Bitsandbytes](https://huggingface.co/blog/4bit-transformers-bitsandbytes), which greatly reduce the memory requirements.
65
+
66
+ | dtype | Largest Layer or Residual Group | Total Size | Training using Adam |
67
+ |-------------------|---------------------------------|------------|----------------------|
68
+ | float32 | 490.94 MB | 14.43 GB | 57.72 GB |
69
+ | float16/bfloat16 | 245.47 MB | 7.21 GB | 28.86 GB |
70
+ | int8 | 122.73 MB | 3.61 GB | 14.43 GB |
71
+ | int4 | 61.37 MB | 1.8 GB | 7.21 GB |
72
+
73
+ #### Running the model on CPU
74
+
75
+ <details>
76
+ <summary> Click to expand </summary>
77
+
78
+ ```python
79
+ import requests
80
+ from PIL import Image
81
+ from transformers import Blip2Processor, Blip2ForConditionalGeneration
82
+
83
+ processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
84
+ model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b")
85
+
86
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
87
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
88
+
89
+ question = "how many dogs are in the picture?"
90
+ inputs = processor(raw_image, question, return_tensors="pt")
91
+
92
+ out = model.generate(**inputs)
93
+ print(processor.decode(out[0], skip_special_tokens=True).strip())
94
+ ```
95
+ </details>
96
+
97
+ #### Running the model on GPU
98
+
99
+ ##### In full precision
100
+
101
+ <details>
102
+ <summary> Click to expand </summary>
103
+
104
+ ```python
105
+ # pip install accelerate
106
+ import requests
107
+ from PIL import Image
108
+ from transformers import Blip2Processor, Blip2ForConditionalGeneration
109
+
110
+ processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
111
+ model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", device_map="auto")
112
+
113
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
114
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
115
+
116
+ question = "how many dogs are in the picture?"
117
+ inputs = processor(raw_image, question, return_tensors="pt").to("cuda")
118
+
119
+ out = model.generate(**inputs)
120
+ print(processor.decode(out[0], skip_special_tokens=True).strip())
121
+ ```
122
+ </details>
123
+
124
+ ##### In half precision (`float16`)
125
+
126
+ <details>
127
+ <summary> Click to expand </summary>
128
+
129
+ ```python
130
+ # pip install accelerate
131
+ import torch
132
+ import requests
133
+ from PIL import Image
134
+ from transformers import Blip2Processor, Blip2ForConditionalGeneration
135
+
136
+ processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
137
+ model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16, device_map="auto")
138
+
139
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
140
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
141
+
142
+ question = "how many dogs are in the picture?"
143
+ inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16)
144
+
145
+ out = model.generate(**inputs)
146
+ print(processor.decode(out[0], skip_special_tokens=True).strip())
147
+ ```
148
+ </details>
149
+
150
+ ##### In 8-bit precision (`int8`)
151
+
152
+ <details>
153
+ <summary> Click to expand </summary>
154
+
155
+ ```python
156
+ # pip install accelerate bitsandbytes
157
+ import torch
158
+ import requests
159
+ from PIL import Image
160
+ from transformers import Blip2Processor, Blip2ForConditionalGeneration
161
+
162
+ processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
163
+ model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", load_in_8bit=True, device_map="auto")
164
+
165
+ img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
166
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
167
+
168
+ question = "how many dogs are in the picture?"
169
+ inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16)
170
+
171
+ out = model.generate(**inputs)
172
+ print(processor.decode(out[0], skip_special_tokens=True).strip())
173
+ ```
174
+ </details>
config.json ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "architectures": [
4
+ "Blip2ForConditionalGeneration"
5
+ ],
6
+ "initializer_factor": 1.0,
7
+ "initializer_range": 0.02,
8
+ "model_type": "blip-2",
9
+ "num_query_tokens": 32,
10
+ "qformer_config": {
11
+ "_name_or_path": "",
12
+ "add_cross_attention": false,
13
+ "architectures": null,
14
+ "attention_probs_dropout_prob": 0.1,
15
+ "bad_words_ids": null,
16
+ "begin_suppress_tokens": null,
17
+ "bos_token_id": null,
18
+ "chunk_size_feed_forward": 0,
19
+ "classifier_dropout": null,
20
+ "cross_attention_frequency": 2,
21
+ "cross_attention_hidden_size": null,
22
+ "decoder_start_token_id": null,
23
+ "diversity_penalty": 0.0,
24
+ "do_sample": false,
25
+ "early_stopping": false,
26
+ "encoder_hidden_size": 1408,
27
+ "encoder_no_repeat_ngram_size": 0,
28
+ "eos_token_id": null,
29
+ "exponential_decay_length_penalty": null,
30
+ "finetuning_task": null,
31
+ "forced_bos_token_id": null,
32
+ "forced_eos_token_id": null,
33
+ "hidden_act": "gelu",
34
+ "hidden_dropout_prob": 0.1,
35
+ "hidden_size": 768,
36
+ "id2label": {
37
+ "0": "LABEL_0",
38
+ "1": "LABEL_1"
39
+ },
40
+ "initializer_range": 0.02,
41
+ "intermediate_size": 3072,
42
+ "is_decoder": false,
43
+ "is_encoder_decoder": false,
44
+ "label2id": {
45
+ "LABEL_0": 0,
46
+ "LABEL_1": 1
47
+ },
48
+ "layer_norm_eps": 1e-12,
49
+ "length_penalty": 1.0,
50
+ "max_length": 20,
51
+ "max_position_embeddings": 512,
52
+ "min_length": 0,
53
+ "model_type": "blip_2_qformer",
54
+ "no_repeat_ngram_size": 0,
55
+ "num_attention_heads": 12,
56
+ "num_beam_groups": 1,
57
+ "num_beams": 1,
58
+ "num_hidden_layers": 12,
59
+ "num_return_sequences": 1,
60
+ "output_attentions": false,
61
+ "output_hidden_states": false,
62
+ "output_scores": false,
63
+ "pad_token_id": 0,
64
+ "position_embedding_type": "absolute",
65
+ "prefix": null,
66
+ "problem_type": null,
67
+ "pruned_heads": {},
68
+ "remove_invalid_values": false,
69
+ "repetition_penalty": 1.0,
70
+ "return_dict": true,
71
+ "return_dict_in_generate": false,
72
+ "sep_token_id": null,
73
+ "suppress_tokens": null,
74
+ "task_specific_params": null,
75
+ "temperature": 1.0,
76
+ "tf_legacy_loss": false,
77
+ "tie_encoder_decoder": false,
78
+ "tie_word_embeddings": true,
79
+ "tokenizer_class": null,
80
+ "top_k": 50,
81
+ "top_p": 1.0,
82
+ "torch_dtype": null,
83
+ "torchscript": false,
84
+ "transformers_version": "4.27.0.dev0",
85
+ "typical_p": 1.0,
86
+ "use_bfloat16": false,
87
+ "vocab_size": 30522
88
+ },
89
+ "text_config": {
90
+ "_name_or_path": "facebook/opt-2.7b",
91
+ "_remove_final_layer_norm": false,
92
+ "activation_dropout": 0.0,
93
+ "activation_function": "relu",
94
+ "add_cross_attention": false,
95
+ "architectures": [
96
+ "OPTForCausalLM"
97
+ ],
98
+ "attention_dropout": 0.0,
99
+ "bad_words_ids": null,
100
+ "begin_suppress_tokens": null,
101
+ "bos_token_id": 2,
102
+ "chunk_size_feed_forward": 0,
103
+ "cross_attention_hidden_size": null,
104
+ "decoder_start_token_id": null,
105
+ "diversity_penalty": 0.0,
106
+ "do_layer_norm_before": true,
107
+ "do_sample": false,
108
+ "dropout": 0.1,
109
+ "early_stopping": false,
110
+ "enable_bias": true,
111
+ "encoder_no_repeat_ngram_size": 0,
112
+ "eos_token_id": 50118,
113
+ "exponential_decay_length_penalty": null,
114
+ "ffn_dim": 10240,
115
+ "finetuning_task": null,
116
+ "forced_bos_token_id": null,
117
+ "forced_eos_token_id": null,
118
+ "hidden_size": 2560,
119
+ "id2label": {
120
+ "0": "LABEL_0",
121
+ "1": "LABEL_1"
122
+ },
123
+ "init_std": 0.02,
124
+ "is_decoder": false,
125
+ "is_encoder_decoder": false,
126
+ "label2id": {
127
+ "LABEL_0": 0,
128
+ "LABEL_1": 1
129
+ },
130
+ "layer_norm_elementwise_affine": true,
131
+ "layerdrop": 0.0,
132
+ "length_penalty": 1.0,
133
+ "max_length": 20,
134
+ "max_position_embeddings": 2048,
135
+ "min_length": 0,
136
+ "model_type": "opt",
137
+ "no_repeat_ngram_size": 0,
138
+ "num_attention_heads": 32,
139
+ "num_beam_groups": 1,
140
+ "num_beams": 1,
141
+ "num_hidden_layers": 32,
142
+ "num_return_sequences": 1,
143
+ "output_attentions": false,
144
+ "output_hidden_states": false,
145
+ "output_scores": false,
146
+ "pad_token_id": 1,
147
+ "prefix": "</s>",
148
+ "problem_type": null,
149
+ "pruned_heads": {},
150
+ "remove_invalid_values": false,
151
+ "repetition_penalty": 1.0,
152
+ "return_dict": true,
153
+ "return_dict_in_generate": false,
154
+ "sep_token_id": null,
155
+ "suppress_tokens": null,
156
+ "task_specific_params": null,
157
+ "temperature": 1.0,
158
+ "tf_legacy_loss": false,
159
+ "tie_encoder_decoder": false,
160
+ "tie_word_embeddings": true,
161
+ "tokenizer_class": null,
162
+ "top_k": 50,
163
+ "top_p": 1.0,
164
+ "torch_dtype": "float16",
165
+ "torchscript": false,
166
+ "transformers_version": "4.27.0.dev0",
167
+ "typical_p": 1.0,
168
+ "use_bfloat16": false,
169
+ "use_cache": true,
170
+ "vocab_size": 50272,
171
+ "word_embed_proj_dim": 2560
172
+ },
173
+ "torch_dtype": "float32",
174
+ "transformers_version": null,
175
+ "use_decoder_only_language_model": true,
176
+ "vision_config": {
177
+ "_name_or_path": "",
178
+ "add_cross_attention": false,
179
+ "architectures": null,
180
+ "attention_dropout": 0.0,
181
+ "bad_words_ids": null,
182
+ "begin_suppress_tokens": null,
183
+ "bos_token_id": null,
184
+ "chunk_size_feed_forward": 0,
185
+ "cross_attention_hidden_size": null,
186
+ "decoder_start_token_id": null,
187
+ "diversity_penalty": 0.0,
188
+ "do_sample": false,
189
+ "dropout": 0.0,
190
+ "early_stopping": false,
191
+ "encoder_no_repeat_ngram_size": 0,
192
+ "eos_token_id": null,
193
+ "exponential_decay_length_penalty": null,
194
+ "finetuning_task": null,
195
+ "forced_bos_token_id": null,
196
+ "forced_eos_token_id": null,
197
+ "hidden_act": "gelu",
198
+ "hidden_size": 1408,
199
+ "id2label": {
200
+ "0": "LABEL_0",
201
+ "1": "LABEL_1"
202
+ },
203
+ "image_size": 224,
204
+ "initializer_factor": 1.0,
205
+ "initializer_range": 1e-10,
206
+ "intermediate_size": 6144,
207
+ "is_decoder": false,
208
+ "is_encoder_decoder": false,
209
+ "label2id": {
210
+ "LABEL_0": 0,
211
+ "LABEL_1": 1
212
+ },
213
+ "layer_norm_eps": 1e-6,
214
+ "length_penalty": 1.0,
215
+ "max_length": 20,
216
+ "min_length": 0,
217
+ "model_type": "blip_2_vision_model",
218
+ "no_repeat_ngram_size": 0,
219
+ "num_attention_heads": 16,
220
+ "num_beam_groups": 1,
221
+ "num_beams": 1,
222
+ "num_channels": 3,
223
+ "num_hidden_layers": 39,
224
+ "num_return_sequences": 1,
225
+ "output_attentions": false,
226
+ "output_hidden_states": false,
227
+ "output_scores": false,
228
+ "pad_token_id": null,
229
+ "patch_size": 14,
230
+ "prefix": null,
231
+ "problem_type": null,
232
+ "projection_dim": 512,
233
+ "pruned_heads": {},
234
+ "qkv_bias": true,
235
+ "remove_invalid_values": false,
236
+ "repetition_penalty": 1.0,
237
+ "return_dict": true,
238
+ "return_dict_in_generate": false,
239
+ "sep_token_id": null,
240
+ "suppress_tokens": null,
241
+ "task_specific_params": null,
242
+ "temperature": 1.0,
243
+ "tf_legacy_loss": false,
244
+ "tie_encoder_decoder": false,
245
+ "tie_word_embeddings": true,
246
+ "tokenizer_class": null,
247
+ "top_k": 50,
248
+ "top_p": 1.0,
249
+ "torch_dtype": null,
250
+ "torchscript": false,
251
+ "transformers_version": "4.27.0.dev0",
252
+ "typical_p": 1.0,
253
+ "use_bfloat16": false
254
+ }
255
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81b77c37224d4f5ba35295c122e614e30ee8312bb5ca60eb0859749a09bb8c37
3
+ size 9996000440
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec126c79363120a346db188eb3524a07547f4fdd6d63a049d855650444dedd4f
3
+ size 5497664472
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "BlipImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "processor_class": "Blip2Processor",
18
+ "resample": 3,
19
+ "rescale_factor": 0.00392156862745098,
20
+ "size": {
21
+ "height": 224,
22
+ "width": 224
23
+ }
24
+ }
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83f4604e9f2c81dace48cbbb245cbe9acadddce7471c17eedc10cd675bf9af62
3
+ size 9996239804
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b224ac0c148bf3aa0a211e5d043d38918ef57c2d3b714771a7c4b124129dbd48
3
+ size 5497724774
pytorch_model.bin.index.json ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "</s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "</s>",
25
+ "lstrip": false,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_prefix_space": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "</s>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "eos_token": {
13
+ "__type": "AddedToken",
14
+ "content": "</s>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "errors": "replace",
21
+ "model_max_length": 1000000000000000019884624838656,
22
+ "pad_token": {
23
+ "__type": "AddedToken",
24
+ "content": "<pad>",
25
+ "lstrip": false,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "processor_class": "Blip2Processor",
31
+ "special_tokens_map_file": null,
32
+ "tokenizer_class": "GPT2Tokenizer",
33
+ "unk_token": {
34
+ "__type": "AddedToken",
35
+ "content": "</s>",
36
+ "lstrip": false,
37
+ "normalized": true,
38
+ "rstrip": false,
39
+ "single_word": false
40
+ }
41
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff