Commit
·
c8157a2
1
Parent(s):
f6f5b2e
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
About this DeepLearning Model:
|
2 |
+
We will build an front end application to upload the image and get the deeplearning model predicts the name of the object with acccuracy.
|
3 |
+
|
4 |
+
Steps for building the Image classification model:
|
5 |
+
1. Image classification model using pretrained DL model
|
6 |
+
1.1 Define deeplearning model
|
7 |
+
2.2 Preprocess the data
|
8 |
+
3.3 Get prediction
|
9 |
+
|
10 |
+
1.1 Define deep learning model
|
11 |
+
# import required modules
|
12 |
+
import json
|
13 |
+
import numpy as np
|
14 |
+
from PIL import Image
|
15 |
+
import matplotlib.pyplot as plt
|
16 |
+
|
17 |
+
# import pytorch related modules
|
18 |
+
import torch
|
19 |
+
from torchvision import transforms
|
20 |
+
from torchvision.models import densenet121
|
21 |
+
# define pretrained DL model
|
22 |
+
model = densenet121(pretrained=True)
|
23 |
+
|
24 |
+
model.eval();
|
25 |
+
1.2 Preprocess data
|
26 |
+
# load image using PIL
|
27 |
+
input_image = Image.open(filename)
|
28 |
+
|
29 |
+
# preprocess image according to the pretrained model
|
30 |
+
preprocess = transforms.Compose([
|
31 |
+
transforms.Resize(256),
|
32 |
+
transforms.CenterCrop(224),
|
33 |
+
transforms.ToTensor(),
|
34 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
35 |
+
])
|
36 |
+
input_tensor = preprocess(input_image)
|
37 |
+
|
38 |
+
# create a mini-batch as expected by the model
|
39 |
+
input_batch = input_tensor.unsqueeze(0)
|
40 |
+
|
41 |
+
# pass input batch to the model
|
42 |
+
with torch.no_grad():
|
43 |
+
output = model(input_batch)
|
44 |
+
1.3 Get prediction
|
45 |
+
pred = torch.nn.functional.softmax(output[0], dim=0).cpu().numpy()
|
46 |
+
np.argmax(pred)
|
47 |
+
# download classes on which the model was trained on
|
48 |
+
!wget https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json
|
49 |
+
# get the prediction accuracy
|
50 |
+
print(classes[str(np.argmax(pred))][1], round(max(pred)*100, 2))
|
51 |
+
2. Deploying Image Classification model
|
52 |
+
1.1 Install required libraries
|
53 |
+
1.2 Setup DL model using streamlit
|
54 |
+
1.3 Deploy DL model on AWS/Colab/HF spaces
|
55 |
+
|
56 |
+
1.1 Install required libraries
|
57 |
+
!pip install -q streamlit
|
58 |
+
!pip install -q pyngrok
|
59 |
+
1.2 Setup DL model using streamlit
|
60 |
+
%%writefile app.py
|
61 |
+
|
62 |
+
## create streamlit app
|
63 |
+
|
64 |
+
# import required libraries and modules
|
65 |
+
import json
|
66 |
+
import numpy as np
|
67 |
+
import matplotlib.pyplot as plt
|
68 |
+
|
69 |
+
import torch
|
70 |
+
from PIL import Image
|
71 |
+
from torchvision import transforms
|
72 |
+
from torchvision.models import densenet121
|
73 |
+
|
74 |
+
import streamlit as st
|
75 |
+
|
76 |
+
# define prediction function
|
77 |
+
def predict(image):
|
78 |
+
# load DL model
|
79 |
+
model = densenet121(pretrained=True)
|
80 |
+
|
81 |
+
model.eval()
|
82 |
+
|
83 |
+
# load classes
|
84 |
+
with open('imagenet_class_index.json', 'r') as f:
|
85 |
+
classes = json.load(f)
|
86 |
+
|
87 |
+
# preprocess image
|
88 |
+
preprocess = transforms.Compose([
|
89 |
+
transforms.Resize(256),
|
90 |
+
transforms.CenterCrop(224),
|
91 |
+
transforms.ToTensor(),
|
92 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
93 |
+
])
|
94 |
+
input_tensor = preprocess(input_image)
|
95 |
+
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
|
96 |
+
|
97 |
+
# get prediction
|
98 |
+
with torch.no_grad():
|
99 |
+
output = model(input_batch)
|
100 |
+
|
101 |
+
pred = torch.nn.functional.softmax(output[0], dim=0).cpu().numpy()
|
102 |
+
|
103 |
+
# return confidence and label
|
104 |
+
confidence = round(max(pred)*100, 2)
|
105 |
+
label = classes[str(np.argmax(pred))][1]
|
106 |
+
|
107 |
+
return confidence, label
|
108 |
+
|
109 |
+
# define image file uploader
|
110 |
+
image = st.file_uploader("Upload image here")
|
111 |
+
|
112 |
+
# define button for getting prediction
|
113 |
+
if image is not None and st.button("Get prediction"):
|
114 |
+
# load image using PIL
|
115 |
+
input_image = Image.open(image)
|
116 |
+
|
117 |
+
# show image
|
118 |
+
st.image(input_image, use_column_width=True)
|
119 |
+
|
120 |
+
# get prediction
|
121 |
+
confidence, label = predict(input_image)
|
122 |
+
|
123 |
+
# print results
|
124 |
+
"Model is", confidence, "% confident that this image is of a", label
|
125 |
+
1.3 Deploy DL model
|
126 |
+
# run streamlit app
|
127 |
+
!streamlit run app.py &>/dev/null&
|
128 |
+
# make streamlit app available publicly
|
129 |
+
from pyngrok import ngrok
|
130 |
+
|
131 |
+
public_url = ngrok.connect('8501');
|
132 |
+
|
133 |
+
public_url
|
134 |
+
Model can be deployed on AWS/Colab/Flask/Hugging Spaces
|
135 |
+
Hugging spaces model
|
136 |
+
https://huggingface.co/spaces/ArunkumarCH/BirdClassification
|