|
from typing import Dict, List, Any |
|
import base64 |
|
from PIL import Image |
|
from io import BytesIO |
|
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel |
|
import torch |
|
|
|
|
|
import numpy as np |
|
import cv2 |
|
import controlnet_hinter |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
if device.type != 'cuda': |
|
raise ValueError("need to run on GPU") |
|
|
|
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16 |
|
|
|
|
|
CONTROLNET_MAPPING = { |
|
"canny_edge": { |
|
"model_id": "lllyasviel/sd-controlnet-canny", |
|
"hinter": controlnet_hinter.hint_canny |
|
}, |
|
"pose": { |
|
"model_id": "lllyasviel/sd-controlnet-openpose", |
|
"hinter": controlnet_hinter.hint_openpose |
|
}, |
|
"depth": { |
|
"model_id": "lllyasviel/sd-controlnet-depth", |
|
"hinter": controlnet_hinter.hint_depth |
|
}, |
|
"scribble": { |
|
"model_id": "lllyasviel/sd-controlnet-scribble", |
|
"hinter": controlnet_hinter.hint_scribble, |
|
}, |
|
"segmentation": { |
|
"model_id": "lllyasviel/sd-controlnet-seg", |
|
"hinter": controlnet_hinter.hint_segmentation, |
|
}, |
|
"normal": { |
|
"model_id": "lllyasviel/sd-controlnet-normal", |
|
"hinter": controlnet_hinter.hint_normal, |
|
}, |
|
"hed": { |
|
"model_id": "lllyasviel/sd-controlnet-hed", |
|
"hinter": controlnet_hinter.hint_hed, |
|
}, |
|
"hough": { |
|
"model_id": "lllyasviel/sd-controlnet-mlsd", |
|
"hinter": controlnet_hinter.hint_hough, |
|
} |
|
} |
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
self.control_type = "depth" |
|
self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"],torch_dtype=dtype).to(device) |
|
|
|
|
|
self.stable_diffusion_id = "runwayml/stable-diffusion-v1-5" |
|
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(self.stable_diffusion_id, |
|
controlnet=self.controlnet, |
|
torch_dtype=dtype, |
|
safety_checker=None).to(device) |
|
|
|
self.generator = torch.Generator(device="cpu").manual_seed(3) |
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
""" |
|
:param data: A dictionary contains `inputs` and optional `image` field. |
|
:return: A dictionary with `image` field contains image in base64. |
|
""" |
|
prompt = data.pop("inputs", None) |
|
image = data.pop("image", None) |
|
controlnet_type = data.pop("controlnet_type", None) |
|
|
|
|
|
if prompt is None and image is None: |
|
return {"error": "Please provide a prompt and base64 encoded image."} |
|
|
|
|
|
if controlnet_type is not None and controlnet_type != self.control_type: |
|
print(f"changing controlnet from {self.control_type} to {controlnet_type} using {CONTROLNET_MAPPING[controlnet_type]['model_id']} model") |
|
self.control_type = controlnet_type |
|
self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"], |
|
torch_dtype=dtype).to(device) |
|
self.pipe.controlnet = self.controlnet |
|
|
|
|
|
|
|
negatice_prompt = data.pop("negative_prompt", None) |
|
num_inference_steps = data.pop("num_inference_steps", 30) |
|
guidance_scale = data.pop("guidance_scale", 7.5) |
|
negative_prompt = data.pop("negative_prompt", None) |
|
height = data.pop("height", None) |
|
width = data.pop("width", None) |
|
controlnet_conditioning_scale = data.pop("controlnet_conditioning_scale", 1.0) |
|
|
|
|
|
image = self.decode_base64_image(image) |
|
|
|
|
|
|
|
out = self.pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
|
|
image=image, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
num_images_per_prompt=1, |
|
height=height, |
|
width=width, |
|
controlnet_conditioning_scale=controlnet_conditioning_scale, |
|
generator=self.generator |
|
) |
|
|
|
|
|
|
|
return out.images[0] |
|
|
|
|
|
def decode_base64_image(self, image_string): |
|
base64_image = base64.b64decode(image_string) |
|
buffer = BytesIO(base64_image) |
|
image = Image.open(buffer) |
|
return image |
|
|